
Issue 5 October 2010

Why Free Plans
Don’t Work

2

Curator’s Note

I HAD TO PUT Ruben Gamez’s excellent “Why Free Plans
Don’t Work” on the cover (with another great illustration
by Pasquale D’Silva). A lot of people have been compar-

ing Hacker Monthly to Wired (or the old Wired), and Ruben’s
article is the antithesis of Wired Issue 16.03’s cover story: “Free!
Why $0.00 is the future of business.”

This issue is light on the “Startup” section and heavy on
programming. Along with the featured “How To Read Math,”
there’s a long article by Steve Yegge on why compilers matter,
plus articles on LaTeX, SSH, jQuery, and more.

Oh, and make sure you don't miss the awesome advertise-
ment by Breadpig.

I hope you enjoy reading this issue as much as I enjoyed
curating it.

— Lim Cheng Soon

ContentsCurator
Lim Cheng Soon

Contributors
Shai Simonson
Fernando Gouvêa
Ruben Gamez
Steve Yegge
Tom Preston-Werner
Slava Akhmechet
Dave Ward
Sym Kat
Ben Pieratt
David Kadavy
Alexis Ohanian

Proofreader
Ricky de Laveaga

Illustrators
Jaime G. Wong
Pasquale D’Silva

Printer
MagCloud

E-book Conversion
Fifobooks.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com — a social news website wildly
popular among programmers and startup founders. The submis-
sion guidelines state that content can be “anything that gratifies
one’s intellectual curiosity.”
Every month, we select from the top voted articles on Hacker
News and print them in magazine format.
For more, visit hackermonthly.com.

Cover Illustration: Pasquale D’Silva

http://fifobooks.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://news.ycombinator.com
http://hackermonthly.com

 3

Contents

PROGRAMMING

14 Rich Programmer Food
By STEVE YEGGE

22 Readme Driven Development
By TOM PRESTON-WERNER

24 What Is LaTeX And Why You Should Care
By SLAVA AKHMECHET

28 Don’t Let jQuery’s $(document).ready()
Slow You Down
By DAVE WARD

32 SSH: Tips And Tricks You Need
By SYMKAT

SPECIAL

36 In Praise Of Quitting Your Job
By BEN PIERATT

38 Design for Hackers: Why You Don’t Use
Garamond on The Web
By DAVID KADAVY

41 Keep Calm And Carry On: What You Didn’t
Know About The Reddit Story
By ALEXIS OHANIAN

44 HACKER COMMENTS

FEATURES

04 How To Read Mathematics
By SHAI SIMONSON and FERNANDO GOUVÊA

10 Why Free Plans Don’t Work
By RUBEN GAMEZ

Illustration: Jaime G. Wong

4 FEATURES

How To Read
Mathematics

FEATURES

By SHAI SIMONSON and FERNANDO GOUVÊA

Illustration: Jaime G. Wong

 5

How To Read
Mathematics

A READING PROTOCOL IS a set of strategies
that a reader must use in order to benefit
fully from reading the text. Poetry calls
for a different set of strategies than fiction,

and fiction a different set than non-fiction. It would be ridicu-
lous to read fiction and ask oneself what is the author’s source
for the assertion that the hero is blond and tanned; it would be
wrong to read non-fiction and not ask such a question. This
reading protocol extends to a viewing or listening protocol in art
and music. Indeed, much of the introductory course material in
literature, music, and art is spent teaching these protocols.

Ed Rothstein’s book, Emblems of Mind, a fascinating book
that focuses on the relationship between mathematics and
music, touches implicitly on reading protocols for mathematics.

[Mathematics is] “a language that can neither be read nor
understood without initiation.”
– Emblems of Mind, Edward Rothstein, Harper Perennial, 1996,
page 15.

Mathematics has a reading protocol all its own, and just as
we learn how to read a novel or a poem, listen to music, or
view a painting, we should learn to read mathematics. When
we read a novel we become absorbed in the plot and characters.
We try to follow the various plot lines and how each affects the
development of the characters. We make sure that the charac-
ters become real people to us, both those we admire and those
we despise. We do not stop at every word, but imagine the
words as brushstrokes in a painting. Even if we are not familiar
with a particular word, we can still see the whole picture. We
rarely stop to think about individual phrases and sentences.
Instead, we let the novel sweep us along with its flow, and carry
us swiftly to the end. The experience is rewarding, relaxing,
and thought provoking.

Novelists frequently describe characters by involving them in
well-chosen anecdotes, rather than by describing them by well-
chosen adjectives. They portray one aspect, then another, then
the first again in a new light and so on, as the whole picture
grows and comes more and more into focus. This is the way to
communicate complex thoughts that defy precise definition.

Mathematical ideas are by nature precise and well defined, so
that a precise description is possible in a very short space. Both
a mathematics article and a novel are telling a story and devel-
oping complex ideas, but a math article does the job with a
tiny fraction of the words and symbols of those used in a novel.
The beauty in a novel is in the aesthetic way it uses language to
evoke emotions and present themes which defy precise defini-
tion. The beauty in a mathematics article is in the elegant way
it concisely describes precise ideas of great complexity.

What are the common mistakes people make in trying to
read mathematics, and how can these mistakes be corrected?

Don’t Miss the Big Picture
“Reading Mathematics is not at all a linear experience
...Understanding the text requires cross references, scanning,
pausing and revisiting”
– Emblems of Mind, page 16.

Don’t assume that understanding each phrase, will enable
you to understand the whole idea. This is like trying to see a
portrait by staring at each square inch of it from the distance
of your nose. You will see the detail, texture and color but
miss the portrait completely. A math article tells a story. Try
to see what the story is before you delve into the details. You
can go in for a closer look once you have built a framework of
understanding. Do this just as you might reread a novel.

Don’t be a Passive Reader
“A three-line proof of a subtle theorem is the distillation of years
of activity. Reading mathematics… involves a return to the
thinking that went into the writing”
– ibid, page 38.

Explore examples for patterns. Try special cases.
A math article usually tells only a small piece of a much

larger and longer story. The author usually spends months
exploring things and going down blind alleys. After a period of
exploration, experiment, and discovery, the author organizes
his/her conclusions into a story that covers up all the mistakes,
wrong turns, and associated motivation, presenting the com-
pleted idea in a neat linear flow. The way to deeply understand
the author’s idea is to recreate what the author left out.

There is a lot between the lines of a polished mathematical
exposition. The reader must participate. At every stage, he/she
must decide whether or not the idea being presented is clear.
Ask yourself these questions:

Why is this idea true?
Do I really believe it?
Could I convince someone else that it is true?
Why didn’t the author use a different argument?
Do I have a better argument or method of explaining the
idea?
Why didn’t the author explain it the way that I understand it?
Is my way wrong?
Do I really get the idea?
Am I missing some subtlety?
Did the author miss a subtlety?
If I can’t understand the idea, can I understand a similar but
simpler concept?
If so, which simpler concept?

6 FEATURES

Is it really necessary to understand this idea?
Can I accept this point without understanding the details of
why it is true?
Will my understanding of the whole story suffer from not
understanding why the point is true?

Putting too little effort into this participation is like reading a
novel without concentrating. After half an hour, you realize the
pages have turned, but you have been daydreaming and don’t
remember a thing you read.

Don’t Read Too Fast
Reading mathematics too quickly results in frustration. When
reading a novel, a half hour of concentration might net the
average reader 20-60 pages with full comprehension, depending
on the novel and the experience of the reader. The same half
hour buys you 0-10 lines of a math article, depending on the
article and how experienced you are at reading mathematics.

For example, consider the following theorem from Levi ben
Gershon’s book, Maaseh Hoshev (The Art of Calculation),
written in 1321.

“When you add consecutive numbers starting with one, and
the number of numbers you add is odd, the result is equal to
the product of the middle number among them times the last
number.”

It is natural for modern day mathematicians to write this as:

A reader should take as much time to unravel the two-inch
version as he would to unravel the two-line version.

Challenge: What does the expression mean?

Solution: Given an integer k, add up the values of i, as i ranges
from 1 through 2k+1. In other words, 1 + 2 + 3 + … + 2k+1.

Challenge: Explain the meaning of 2k+1 in the expression

Solution: It represents an odd number. Every even number
is two times something, so every odd number is two times
something plus one.

Challenge: On the right side of the equation

the term 2k+1 represents the last number in the sum.
What does k+1 represent and why?
Solution: The expression k+1 represents the middle number in
the sum. The middle number is halfway between 1 and 2k+1.
That is, the middle number equals

 (1 + 2k+1)/2 = (2k+2)/2 = k+1.

Challenge: Can you provide an illustration of Levi’s theorem?
Solution: An illustration of Levi’s theorem is

 = 1 + 2 + 3 + 4 + 5 = 3×5. In this case, k = 2.

Challenge: Why is this theorem true?
Solution: The following proof is from one of my students. Her
idea is to pair up all the numbers except the last, creating k
pairs each of which sums to 2k+1. Start with the middle pair,
k and k+1. This pair sums to 2k+1. Continue pairing numbers
moving left from k and right from k+1. Each new pair also
sums to 2k+1 since moving left subtracts one and moving right
adds one. The last pair is 1 and 2k, giving k pairs all together.
The last number, 2k+1, is left unpaired. The total sum equals
the sum of the k pairs plus the last number, 2k+1. That is, the
total sum equals k(2k+1) + 2k+1 = (k+1)(2k+1).

In contrast, here is Levi’s elegant proof discussed in Chapter
4. Levi’s proof is similar to my student’s but he pairs up
numbers starting with the pair surrounding the middle term, k
and k+2, and working outward. He points out that each pair
sums to twice the middle term. This continues until the final
pair of numbers, 1 and 2k+1. Therefore, the entire sum is the
same as if every one of the 2k+1 terms were the middle term,
k+1. That is, the sum is (k+1)(2k+1).

You can speed up your math reading skill by practicing,
but there is no shortcut. Like learning any skill, trying too
much too fast can set you back, and may kill your motivation.
Imagine joining a high-energy aerobics class when you have not
worked out for two years. You may make it through the first
class, but you are not likely to come back. The frustration from
seeing the experienced class members effortlessly do twice as
much as you, while you moan the whole next day from sore-
ness, might be too much to take. Be realistic, be patient, and
don’t punish yourself.

 7

Make the Idea your Own
The best way to understand what you are reading is to make
the idea your own. This means following the idea back to its
origin, and rediscovering it for yourself. Mathematicians often
say that to understand something you must first read it, then
write it down in your own words, then teach it to someone
else. Everyone has a different set of tools and a different level
of “chunking up” complicated ideas. Make the idea fit in with
your own perspective and experience.

"When I use a word, it means just what I choose it
to mean"

“The meaning is rarely completely transparent, because every
symbol or word already represents an extraordinary condensa-
tion of concept and reference”
– Emblems of Mind, page 16.

A well-written mathematical text will be careful to use a word
in one sense only, making a distinction, say, between combina-
tion and permutation (or arrangement). A strict mathematical
definition might imply that "yellow rabid dog" and "rabid
yellow dog" are different arrangements of words but the same
combination of words. Most English speakers would disagree.
This extreme precision is utterly foreign to most fiction and
poetry writing, where using multiple words, synonyms, and
varying descriptions is de rigueur. A reader is expected to know
that an absolute value is not about some value that happens to
be absolute, nor is a function about anything functional.

A particular notorious example of a phrase commonly used
in mathematical writing that might easily be misinterpreted
is the use of “It follows easily that” and equivalent constructs.
The phrase means something like this:

One can now check that the next statement is true with a
certain amount of essentially mechanical, though perhaps labori-
ous, checking. I, the author, could do it, but it would use up a
large amount of space and perhaps not accomplish much, since
it’d be best for you to go ahead and do the computation to clarify
for yourself what’s going on here. I promise that no new ideas
are involved, though of course you might need to think a little in
order to find just the right combination of good ideas to apply.

In other words, the construct “It follows easily that,” when
used correctly, is a signal to the reader that what’s involved
here is perhaps tedious and even difficult, but involves no deep
insights. The reader is then free to decide whether the level of
understanding he/she desires requires going through the details
or instead, warrants saying “Okay, I’ll accept your word for it.”

Now, regardless of your opinion about whether that con-
struct should be used in a particular situation, or whether
authors always use it correctly, you should understand what it
is supposed to mean. “It follows easily that” does not mean

if you can’t see this at once, you’re a dope,

nor does it mean

this shouldn’t take more than two minutes,

but a person who doesn’t know the lingo might misinterpret
the phrase, and thereby feel frustrated. This is apart from the
issue that one person’s tedious task is another person’s chal-
lenge, so not only must the audience engage the author, but the
author must correctly judge the audience.

Know Thyself
Texts are written with a specific audience in mind. Make sure
that you are the intended audience, or be willing to do what it
takes to become the intended audience.

For example, take T.S. Eliot’s A Song for Simeon:

Lord, the Roman hyacinths are blooming in bowls and
The winter sun creeps by the snow hills;
The stubborn season has made stand.
My life is light, waiting for the death wind,
Like a feather on the back of my hand.
Dust in sunlight and memory in corners
Wait for the wind that chills towards the dead land.

Eliot’s poem pretty much assumes that a reader is going to
either know who Simeon was or be willing to find out. It also
assumes a reader will be somewhat experienced in reading
poetry and/or are willing to work to gain such experience.
Eliot assumes that a reader will either know or investigate the
allusions here. This goes beyond knowledge of things like who
Simeon was. For example, why are the hyacinths “Roman?”
Why is that important?

Eliot assumes that the reader will read slowly and pay
attention to the images: he juxtaposes dust and memory, relates
old age to winter, compares waiting for death with a feather
on the back of the hand, and so on. He assumes that a reader
will recognize this as poetry; in a way, Eliot is assuming that the
reader is familiar with a whole poetic tradition. For example, a
reader is supposed to notice that alternate lines rhyme, but that
the others do not. Most of all, the poet assumes that a reader
will read not only with the mind, but also with his/her emo-
tions and imagination, allowing the images to summon up this
old man, tired of life but hanging on, waiting expectantly for
some crucial event, for something to happen.

Most math books are written with the assumption that the
audience knows certain things, that they have a certain level of
“mathematical maturity,” and so on. Before you start to read,
make sure you know what the author expects you to know.

8 FEATURES

An Example of Mathematical Writing
To allow an opportunity to experiment with the guidelines
presented here, I am including a small piece of mathematics
often called the birthday paradox. It is a concise mathematical
article explaining the problem and solving it.

The Birthday Paradox
A professor offers to bet anyone in a class of 30 random
students that there are at least two people in the class with
the same birthday (month and day, but not necessarily year).
Would you accept the bet? What if there were fewer people in
the class?

Let the birthdays of n people be uniformly distributed
among 365 days of the year (assume no leap years for simplic-
ity). We prove that the probability that at least two people
have the same birthday (month and day) equals:

What is the probability that among 30 students in a room,
there are at least two or more with the same birthday? For n =
30, the probability of at least one matching birthday is about
71%. This means that with 30 people in your class, the professor
should win the bet 71 times out of 100 in the long run. It turns
out that with 23 people, she should win about 50% of the time.

Here is the proof: Let P(n) be the probability in question.
Let Q(n) = 1 – P(n) be the probability that no two people
have a common birthday. Now calculate Q(n) by dividing
the number of n birthdays without any duplicates by the total
number of n possible birthdays. Then solve for P(n).

The number of n birthdays without duplicates is:

 365 × 364 × 363 × ... × (365 – n + 1).

This is because there are 365 choices for the first birthday,
364 for the next and so on for n birthdays.

The total number of n birthdays without any restriction is
365n because there are 365 choices for each of n birthdays.
Therefore, Q(n) equals

Solving for P(n) gives P(n) = 1 – Q(n) and hence our result.

Shai Simonson received his BA in mathematics from Columbia University
and his PhD in computer science from Northwestern. Currently, he is a
professor at Stonehill College. Simonson has taught mathematics and
computer science to students from middle school through graduate school
for over 30 years, and recently published a Java textbook with McGraw
Hill. The article How to Read Mathematics appears in his newest book
Rediscovering Mathematics, (coming out late 2010). The book is recom-
mended for general readers, and contains no math past 10th grade.

Fernando Q. Gouvêa is Carter Professor of Mathematics at Colby College.
For the last 11 years, he was editor of MAA Focus, the newsmagazine of
the Mathematical Association of America, and is currently editor of MAA
Reviews, an online book review service. A specialist in Number Theory
and the History of Mathematics, Gouvêa is the author of several books,
including Math through the Ages: A Gentle History for Teachers and Others,
co-authored with William P. Berlinghoff.

Reprinted with permission of the original authors. First appeared in http://hn.my/readmath/.

http://hn.my/readmath/

http://store.xkcd.com/breadpig/#Awesomesauce

10 FEATURES

Illustration: Pasquale D’Silva

 11

By RUBEN GAMEZ

NOT TOO LONG ago it seemed like every
product I knew was offering some sort of
free plan. The strategy was brilliant: get

loads of people using your product and eventually turn
them into paying customers. Everywhere I looked there
were stories of people making money hand over fist
with this approach.

When 37signals talked about giving something away
for free as a marketing strategy, it made a lot of sense
to me:

“For us, Writeboard and Ta-da list are completely free
apps that we use to get people on the path to using our
other products. Also, we always offer some sort of
free version of all our apps.
We want people to experience the product, the inter-
face, the usefulness of what we’ve built. Once they’re
hooked, they’re much more likely to upgrade to one of
the paying plans (which allow more projects or pages
and gives people access to additional features like file
uploading and ssl data encryption).”

So when I launched Bidsketch — a SaaS based pro-
posal application for designers — offering a free plan
was a no-brainer in my book. Out of all the important
decisions I spent time mulling over before my launch, I
gave this one the least thought.

Early on, things were working out nicely. In the first
few days of my launch I had more people sign up for the
paid plan than the free plan.

“Man, this free plan is really working out,” I thought.
Here is a look at the numbers:

The numbers looked but great, but I suspected they
weren’t sustainable because I had launched to my mail-
ing list. A well-maintained mailing list tends to convert
much better than traffic from other sources.

In any case, I was still happy with the results a week
later, once I started converting general website traffic:

While the numbers looked good I knew they
wouldn’t last because I was relying on a limited time
offer. I just didn’t realize how much worse things
would get:

For the next month only 1% of users would choose
the paid option. My user base was growing fast but
the money was barely trickling in. Also, support was
starting to get tricky, which left me uncomfortable at
the thought of what things would look like six months
down the line.

Why Free Plans Don’t Work

12 FEATURES

How many of the free accounts was I able to
upgrade to paid? I didn’t fare any better upselling users:
0.8% of free user accounts eventually upgraded to paid.

When things started going south, I figured I was to
blame for this. I simply wasn’t carving out the right
features. Or maybe I wasn’t prompting for upgrades at
the right places. I tried all sorts of tactics to convert my
free users:

More upgrade prompts
Less features on free accounts
Premium features for 15 days
More emails aimed at upselling users to paid

None of these changes had a significant impact.
The only thing that seemed to be consistent about my
growth was that my revenue was relatively flat while
my user base kept growing.

If I stayed on this path, I’d soon have thousands of
free users to support.

So in a desperate attempt to get things moving in the
right direction, I experimented for a week by killing my
free plan. I didn’t tell anyone that I was getting rid of
my free plan, I simply deleted it from my pricing page.

My major concern was that I’d keep the same
number of paid users coming in and I’d lose all the
free ones. Which means I wouldn’t have a targeted list
of users to try to upsell to a paid plan. Not that I was
having much success getting them to upgrade, but at
least it was something.

Things didn’t quite turn out that way. This
change that took all of five minutes to make, led to
an 8x increase in paid conversions.

Look at that again. That’s not 8%. That’s 800%.
I felt comfortable enough with the results to try it

out for the entire month. Amazingly, this resulted in a
10x increase in paid conversions for the month.

And I’m not the only one
It wasn’t long after I got rid of my free plan that I

started to notice that a lot of people were citing similar
issues with having a free plan.

I saw that 37signals had hidden theirs.

Before:

After:

And that I ran into a Mixergy interview where
37signals founder, Jason Fried, talks about their free
plan (6:00 into the interview):

“… The majority of the revenues for our products come
from people who sign up for the paid versions upfront.
So we definitely have people upgrading from free to
paid, but the majority of people who are on pay
started on pay… of course, more people are going to
pick the free version and stay on the free version, but if
you’re looking to get paying customers, ask for money
upfront and you’ll have a lot better shot of getting them.”

The so-called Freemium success stories had similarly
low ratios of free to paid accounts. We can see numbers
published about Pandora, Evernote, and MailChimp
showing this pattern.

Pandora started out with less than 1% of their
user base as paid subscribers. Once they focused on
delivering a better premium offering they were able
to increase that to 1.7%. Still, pretty underwhelming
unless you’ve got 20 million people using your service
like they do.

“If I stayed on this path, I’d soon have
thousands of free users to support.”

 13

Evernote is looking at a 0.5% conversion rate to paid
accounts initially and can convert 2% of the people
that stick around for a year.

While there wasn’t a specific conversion rate pub-
lished for MailChimp, they did mention the negative
side effect of abuse-related issues:

“But the biggest bumps of all? A 354 percent increase
in abuse-related issues like spamming, followed by a
245 percent increase in legal costs dealing people trying
to game the system.”

Holy crap. Where was this info when I needed it?
CrazyEgg decided to drop its free plan in Jan of

2009 and they haven’t looked back. I asked CrazyEgg
co-founder Hiten Shah why they decided to drop their
free plan back then. “We thought that if we dropped it
we would make more money,” said Hiten. This turned
out to be a good move since it doubled their revenue
that month.

LessAccounting co-founder Allan Branch said while
they don’t claim to know what the best approach is in
regards to a free plan, they haven’t seen a good reason
to change what they’re doing now. With them, users
have to sign up to a paid plan trial, and will get
dropped to a free plan if they don’t enter payment
information at the end of the trial. Obviously, this
approach of making users choose a paid plan at signup
has worked well for them so far.

An Example We Can Relate To
A lot of us aren’t at the same level that these guys
are; we’re not dealing with millions of users, or even
hundreds of thousands. So an example like Pluggio
might be easier to relate to.

Pluggio is a Freemium Twitter web app created by
Justin Vincent. He has a great stats page that shows
everything from monthly revenue to the breakdown of
users by plan type.

Taking a look at that page reveals that he’s actually
doing very well for a relatively young app in this space.

He’s been averaging about a thousand dollars
a month since November of last year. And unlike
the bigger guys, his paid users make up 2.5% of all

accounts. That’s damn good for any sort of Freemium
app judging by the numbers that we’ve seen so far.

I spoke with Justin to ask him about his experience
with the Freemium model. He seemed to be doing well
with Pluggio which is why I was surprised when he told
me he was seriously considering killing his free plan.

His reason for doing this? Revenue has been
relatively flat and the number of users has been steadily
increasing over the last few months (currently nearing
five thousand).

This says a lot about the pitfalls of having a free plan
for entrepreneurs with limited resources.

Do they ever make sense?
I’m not saying that it’s impossible to be successful if
you launch with a free plan.

Obviously free plans have worked well for companies
like Wufoo, MailChimp, and FreshBooks, so we know
they can work. But the problem is that we’re not them.

We need to stop blindly copying them and start
thinking about ways to bring in revenue.

I’ll concede that there are certain types of apps
that are more likely to succeed by offering a free plan
and going with the Freemium model. But the vast
majority of apps aren’t in this category, and the vast
majority of people don’t have the resources to make
that model work.

Taking advantage of word-of-mouth marketing
requires more users than most of us will attain. Instead,
we end up with a large number of free users zapping
away valuable resources for nothing in return. To top
it off, most free users will never end up converting to a
paid plan.

If we have thousands of users that don’t increase
awareness and will never pay for our product, why do
we insist in offering something that’s going to hurt our
business? Maybe we should just skip that free plan and
focus on making money instead.

Ruben Gamez is the founder of Bidsketch, web based proposal
software for designers. When he’s not developing software, he’s
furiously working towards becoming a better Micropreneur.

“Taking advantage of word-of-mouth
marketing requires more users than
most of us will attain.”

Reprinted with permission of the original author. First appeared in http://hn.my/free/.

http://hn.my/free/

14 PROGRAMMING

THIS IS ANOTHER one of those
blog topics I’ve been sitting
on for way too long, trying

to find a polite way of saying something
fundamentally impolite. I don’t see a way
to do it. So: you stand a good chance of
being offended by this blog entry. (Hey,
just don’t say I didn’t warn ya.)

I’ve turned off blog comments,
incidentally, because clever evil people
have figured out how to beat captchas
using non-algorithmic approaches, and I
don’t have the bandwidth to police spam
myself. Sorry.

I don’t want to give you a heart attack,
so I’m going to give you the gentle-yet-
insistent executive summary right up
front. If you can make it through my
executive summary without a significant
increase in heart rate, then you’re prob-
ably OK. Otherwise, you might consider
drinking heavily before reading this, just
like people did in the old movies when
they needed their leg sawed off. That’s
what I’m doing, in any case (drinking,
that is, not sawing my leg off).

Gentle, yet insistent executive summary:
If you don’t know how compilers work,
then you don’t know how computers
work. If you’re not 100% sure whether
you know how compilers work, then you
don’t know how they work.

You have to know you know, you know.

In fact, Compiler Construction is, in
my own humble and probably embar-
rassingly wrong opinion, the second most
important CS class you can take in an
undergraduate computer science program.

Because every deep-dive I’ve
attempted on this topic over the past
year or so has failed utterly at convincing
me after I sobered up, I’m going to stage
this production as a, erm, stage produc-
tion, with N glorious, er, parts, separated
by intermissions. So without further ado...

Actually, that sounds like way too
much work. So I’ll just rant. That’s what
you paid good money to hear anyway,
right? I promise to make so much fun of
other people that when I make fun of
you, you’ll hardly notice.

Cots and Beards
I took compilers in school. Yup. Sure
did. From Professor David Notkin at the
University of Washington, circa late 1991
or thereabouts.

Guess what grade I got? I got a zero.
As in, 0.0. That was my final grade, on
my transcript. That’s what happens at
the University of Washington when you
get an Incomplete and don’t take the
necessary corrective actions (which I’ve
never figured out, by the way.) After
some time elapses, it turns into a zero.

You can get an Incomplete in various
different legitimate ways, including my
way, which was to be an ill-considered
beef-witted mooncalf who takes the
course past the drop-date and then
decides not to finish it because he
doesn’t feel like it. I earned that Incom-
plete, I tell you.

I took Compilers again a few years
later. I was in college for a long time,
because I got hired on as a full-time
employee by Geoworks about a year
before I graduated (among other
reasons), and it wound up extending my
graduation for several years.

Don’t do that, by the way. It’s really
hard to finish when you’re working
full-time. Get your degree, then go to
work. All the more so if you’re a Ph.D.
candidate within any reach of finishing.
You don’t want to be just another ABD
for the rest of your life. Even if you’re
not sad, per se, we’ll be sad for you.

I got a decent grade in Compilers the
second time around. I actually under-
stood compilers at a reasonably superfi-
cial level the first time, and not too badly
the second time. What I failed to grasp
for many more years, and I’m telling you
this to save you that pain, is why compil-
ers actually matter in the first place.

Rich Programmer Food
By STEVE YEGGE

PROGRAMMING

 15

Here’s what I thought when I took it
back in 1991. See if it sounds familiar. I
thought: a compiler is a tool that takes
my program, after whining about it a lot,
and turns it into computer-speak. If you
want to write programs, then a compiler
is just one of those things you need. You
need a computer, a keyboard, an account
maybe, a compiler, an editor, optionally
a debugger, and you’re good to go. You
know how to Program. You’re a Program-
mer. Now you just need to learn APIs
and stuff.

Whenever I gave even a moment’s
thought to whether I needed to learn
compilers, I’d think: I would need to
know how compilers work in one of two
scenarios. The first scenario is that I go
work at Microsoft and somehow wind
up in the Visual C++ group. Then I’d
need to know how compilers work. The
second scenario is that the urge suddenly
comes upon me to grow a long beard and
stop showering and make a pilgrimage
to MIT where I beg Richard Stallman to
let me live in a cot in some hallway and
work on GCC with him like some sort of
Jesuit vagabond.

Both scenarios seemed pretty unlikely
to me at the time, although if push
came to shove, a cot and beard didn’t
seem all that bad compared to working
at Microsoft.

By the way, my brother Dave was at
a party once, long ago, that had more
than its fair share of Microsoft people,
and apparently there was some windbag
there bragging loudly (this is a party,
mind you) that he had 15 of the world’s
best compiler writers working for him in
the Visual C++ group. I told Dave: “wow,
I didn’t realize Richard Stallman worked
at Microsoft”, and Dave was bummed
that he hadn’t thought of that particular
riposte at the time. So it goes.

The sad part about that story is that
I’ve found myself occasionally wanting
to brag that I work with some of the best
compiler writers in the world at Google.
Please, I beg you: if you ever find me at a
party bragging about the compiler writ-
ers I work with, have pity on us all and
shoot me dead on the spot. Hell, bash me
over the head with a lamp if you have to.

Anyway, now you know what I
thought of compilers in 1991. Why I
even took the class is beyond me. But
I didn’t finish. And the second time
around – which I only did because I felt
bad about the first time around: not
from the zero, but from having let David
Notkin down – I only took the time to
understand the material well enough to
finish the course with a decent grade.

I was by no means atypical. If you’re
a CS student and you love compilers
(which, anecdotally, often means you’re
in the top 5% of computer science
students in your class worldwide), then
I salute you. I bet I’m way better at
Nethack than you are. The reality is that
most programmers are just like I was, and
I can’t really fault ’em for that.

Before I leave this sordid story forever,
I feel obliged to point out that it’s
partly academia’s fault. Except for type
systems research, which is being treated
with approximately the same scholarly
caution and restraint as Arthur’s Grail
Quest, compilers have been out of favor
in academia for a long time. So schools
don’t do a good job at marketing compil-
ers, and giving them due credit as a
critical topic in their own right. It’s a sad
fact that most schools don’t require you
to take compilers in order to graduate
with a Computer Science degree.

Sigh.

“The Olive Garden: it’s where poor people
go to eat rich people food. — Dave Yegge

”

16 PROGRAMMING

How Would You Solve...
You’re a programmer, right? OK, I’ll
propose some programming situations
for you, and you tell me how you’d
solve them.

Situation : you’re doing a bunch of
Java programming, and your company
has explicit and non-negotiable
guidelines as to how to format your
Java code, down to every last imagin-
able detail. How do you configure
your editor to auto-format your code
according to the style guide?

Situation : your company does a lot
of Ajax stuff, and your JavaScript
code base is growing almost as fast as
your other code. You decide to start
using jsdoc, a javadoc pseudoclone for
JavaScript, to document your func-
tions in a way that permits automated
doc extraction. You discover that
jsdoc is a miserable sod of a Perl script
that seg faults on about 50% of your
code base, and – bear with me here –
you’ve vowed never to write another
line of Perl, because, well, it’s Perl.
Pick your favorite reason. How do you
write your own jsdoc extractor, bear-
ing in mind that it will need to do at
least a cursory parse of the JavaScript
code itself?

Situation : your company has a
massive C++ code base, the result of
many years of hard work by dozens,
if not hundreds, of engineers. You
discover that the code needs to be
refactored in a nontrivial way, e.g. to
upgrade from 32-bit to 64-bit, or to
change the way you do your database
transactions, or (God help you)
because you’re upgrading your C++
compiler and the syntax and seman-
tics have all changed again. You’re
tasked with fixing it. What do you do?

Situation : someone at your company
writes a bitchin’ new web based code
review tool. Everyone switches to it.
You realize, after using it for a while,
that you miss having it syntax-
highlight the source code for you.
You don’t have much time, but you
might be able to afford a week or so,
part-time, to make it happen. How do
you do it? (Let’s say your company
uses five to eight languages for 99% of
their code.)

Situation : an unexpected and slightly
bizarre new requirement arises on
your current project: you need to be
able to use a new kind of hardware
router. Maybe all your Web 2.0 stuff
is screwing up your border routers or
network bandwidth monitors, who
knows. All you know is the sysops
and network engineers are telling you
that you need to talk to these new
routers directly. The routers have
IP addresses, a telnet interface, and
a proprietary command language.
You send commands, and they send
responses. Each command has its own
syntax for its arguments, and you need
to parse the responses (which have
no documented format, but you can
reverse-engineer it) to look for certain
patterns, in order to set them in the
right state for your wacky uploads or
downloads. What tool do you use?

Situation : your company’s projects are
starting to slip. The engineers are all
smart, and they are all using the latest
and greatest state-of-the-art Agile
Object-Oriented Software Engineering
Principles and programming languages.
They are utterly blameless. However,
for some reason your code base is get-
ting so complex that project estimates
are going wildly awry. Simple tasks
seem to take forever. The engineers
begin talking about a redesign. This
is the Nth such redesign they have
gone through in the past five years,
but this is going to be the big one that
fixes everything. What color slips of
paper do you give them? Woah, ahem,
sorry, I mean how do you ensure their
success this time around?

Situation : you have a small, light-
weight startup company filled
with cool young people with long
blue-tinted hair and nose rings and
tongue rivets and hip black clothes
and iphones and whatever the hell
else young people have these days.
You use Ruby on Rails for your site,
and it scales just fine for your number
of visitors. (You’ve never bothered
to measure whether your number
of visitors is a function of your site’s
latency, because it’s never occurred
to you to wonder.) You read about
the latest horrible godawful Rails
security vulnerability, under which
users can make arbitrary SEC filings
on behalf of your company by sending
properly formatted GET requests to
your public site. You download the
new version and read the unit test
code to figure out what the actual
vulnerability is, since they didn’t say,
and you determine that you need to
make a set of nontrivial code changes
to remove a particular (and mysteri-
ously non-greppable) idiom from your
code base, replacing it by mechanical
transformation to a different idiom.
How do you do it?

Situation : some drunken blogger pres-
ents you with seven weird situations
and asks you to speculate about what
they have in common. Do you already
know the answer?

 17

Here are the answers. What, you
thought these were rhetorical?

Scenario : you lobby your company
to change the style guide to match
whatever Eclipse does by default.

Scenario : you post to the jsdoc mail-
ing list and ask if anyone else has had
this problem. Several people say they
have, and the issue pretty much dies
right then and there.

Scenario : You quit. Duh. You knew
that was the answer before you
reached the first comma.

Scenario : Tough it out. Colors are
for weenies. Or maybe you wire up
GNU Source Highlight, which covers
languages all the way from Fortran
to Ada, and you live with the broken
highlighting it provides.

Scenario : Perl. It’s a swiss army
knife. You can use it to sidestep this
problem with honor, by disembowel-
ing yourself.

Scenario : Pink.
Scenario : Fix it by hand. Hell, you

only have about 10k lines of code for
your whole site. It’s Rails, fer cryin’
out loud. This was a trick question.

Scenario : Yes. You skim until the
end of the blog, just to find out what
the first-most-important CS class is.
Stevey’s well known for shaggy-dog
jokes like this.

And there you have it. You’re now
equipped to deal with just about every
programming situation you could come
across. So you obviously don’t need to
know compilers.

How Compilers Work
Here are some real-life answers from
real-life candidates, with real-life Ph.D.s
in Computer Science, when asked how
compilers work.

Real Candidate : “Oh! They, ah, um,
scan your program one line at a time
and convert each line to assembly
language.”

Real Candidate : “Compilers check
errors in your program and, ah, tell
you if you had bad syntax. That’s all I
remember.”

Real Candidate : “I... <3-minute
pause>... I don’t know.”

Real Candidate : “They preprocess
your program and convert #DEFINE
statements into code, and then, um,
emit machine code.”

That’s pretty much all the detail you’ll
ever get out of 75% of all interview
candidates, because, hey, they don’t want
to work in a hallway at MIT. Can you
blame them?

Only about 3% to 5% of all interview
candidates (and that’s being optimistic)
can tell you any details about how a
compiler works. The rest will do some
handwaving about lex and yacc and code
generation, maybe.

I told you your heart rate would go up.
Didn’t I?

Take a deep breath.

Why Compilers Matter, Part 1
The first reason Compiler Construction
is such an important CS course is that it
brings together, in a very concrete way,
almost everything you learned before
you took the course.

You can’t fully understand how
compilers work without knowing
machine architecture, because compil-
ers emit machine code. It’s more than
just instructions; compilers need to
understand how the underlying machine
actually operates in order to translate
your source code efficiently.

Incidentally, “machines” are just about
anything that can do computations. Perl
is a machine. Your OS is a machine.
Emacs is a machine. If you could prove
your washing machine is Turing com-
plete, then you could write a compiler
that executes C code on it.

But you knew that already.
You can’t understand how modern

compilers work without knowing how
Operating Systems work, because no
self-respecting machine these days
runs without an operating system. The
OS interface forms part of the target
machine. Sure, you can find people
working on five- to ten-year mainframe
projects that ultimately run no faster
than a PC from Costco, and they may
dispense with the operating system due
to time constraints, plus the fact that
they have a worldwide market of one
customer. But for most of us, the OS is
part of the machine.

You won’t understand how compilers
work unless you’ve taken a theory of
computation course. The theory of com-
putation reads like part one of chapter 1
of a compilers book. You need all of it.

You’ll have difficulty keeping the
phases (and even the inputs and outputs)
of a compiler straight in your head unless
you’ve taken a programming languages
course. You have to know what the
capabilities of programming languages
are, or at least have an inkling, before you
can write a program that implements
them. And unless you know more than
one language well, it won’t make much
sense to write a program in language A
that converts language B to language C.

You’re actually surrounded by
compilation problems. You run into them
almost every day. The seven scenarios I
outlined above are the tip of the iceberg.
(The eighth one is the rest of the iceberg,
but no skimming!)

Compilers take a stream of symbols,
figure out their structure according
to some domain-specific predefined
rules, and transform them into another
symbol stream.

18 PROGRAMMING

Sounds pretty general, doesn’t it?
Well, yeah.

Could an image be considered a
symbol stream? Sure. Stream each row of
pixels. Each pixel is a number. A number
is a symbol. You can transform images
with compilers.

Could English be considered a symbol
stream? Sure. The rules are pretty damn
complex, but yes, natural language
processing (at least the deterministic
kind that doesn’t work and has been sup-
planted by stochastic methods) can be
considered a fancy kind of compilation.

What about ordinary code? I mean, we
don’t all deal with image processing, or
natural language processing. What about
the rest of us? We just write code, so do
compilers really matter?

Well, do you ever, EVER need to write
code that deals with your own code
base? What if you need to write a syntax
highlighter? What if your programming
language adds some new features and
your editor doesn’t support them yet? Do
you just sit around and wait for “some-
one” to fix your editor? What if it takes
years? Doesn’t it seem like you, as the
perfectly good programmer that you are,
ought to be able to fix it faster than that?

Do you ever need to process your
code base looking for certain idioms?
Do you ever need to write your own
doc extractor?

Have you ever worked on code bases
that have grown inexplicably huge,
despite all your best efforts to make
them modular and object-oriented? Of
course you have. What’s the solution?

You either learn compilers and start
writing your own DSLs, or your get
yourself a better language.

I recommend NBL, by the way. It’s my
personal favorite: the local maximum in
a tensor-field of evil, the highest ground
in the vicinity of Hell itself. I’m not going
to tell you what NBL is, yet, though.
Patience! I’m only half done with my
Emacs-mode for it.

If you don’t take compilers...
One reason many programmers don’t
take compilers is that they’ve heard it’s
really, really hard. It’s often the
“capstone” course of a CS program (OS
often being the other one), which means
it’s a sort of “optional rite of passage” that
makes you a Real Programmer and puts
hair on your chest, regardless of gender
or chest-hair preference.

If you’re trying to plan out a schedule
that gets you to graduation before the
money runs out, and hopefully with
a GPA that doesn’t cause prospective
employers to summon the guard dogs
on you, then when you hear the phrase
“optional rite of passage”, who can blame
you if you look for alternatives?

I’m not saying other CS courses
aren’t important, incidentally. Operating
Systems, Machine Learning, Distributed
Computing and Algorithm Design are all
arguably just as important as Compiler
Construction. Except that you can take
them all and still not know how com-
puters work, which to me means that
Compilers really needs to be a manda-
tory 300-level course. But it has so many
prerequisites that you can’t realistically
make that happen at most schools.

Designing an effective undergrad CS
degree is hard. It’s no wonder so many
ivy-league schools have more or less
given up and turned into Java Certifica-
tion shops.

If you’re a conscientious CS student,
you’ll at least take OS and AI. You may
come out without knowing exactly how
compilers work, which is unfortunate,
but there will be many problem domains
in which you can deliver at least as much
value as all the other people just like you.
That’s something to feel good about, or
at least as good as everyone else feels at
any rate.

Go team.
Most programmers these days, sadly,

just want the degree. They don’t care what
they learn. They want a degree so they can
get a job so they can pay the bills.

Most programmers gravitate towards a
set of courses that can best be described
as the olive-garden of computer science:
the places where dumb programmers go
to learn smart programmer stuff.

I hesitate to name these courses
explicitly. I wouldn’t be agile enough to
dodge the game of graphic bloodshed
aimed at me by animated, project-man-
aging, object-oriented engineers using
Java and Web 2.0 technologies to roast
me via user interfaces designed rationally
through teamwork and modern software
methodologies. I’d become a case study
in the ethics of software and its impact
on our culture.

But you can probably imagine what
some of the courses are.

If you don’t take compilers then you
run the risk of forever being on the pro-
grammer B-list: the kind of eager young
architect who becomes a saturnine old
architect who spends a career building
large systems and being damned proud
of it.

Large Systems Suck
This rule is 100% transitive. If you build
one, you suck.

Compiler Camps
It turns out that many compiler “experts”
don’t know compilers all that well,
because compilers can logically be
thought of as three separate phases – so
separate, in fact, that they constitute
entirely different and mostly non-
overlapping research domains.

The first big phase of the compilation
pipeline is parsing. You need to take
your input and turn it into a tree. So
you go through preprocessing, lexical
analysis (aka tokenization), and then
syntax analysis and IR generation. Lexical
analysis is usually done with regexps.
Syntax analysis is usually done with
grammars. You can use recursive descent
(most common), or a parser generator
(common for smaller languages), or with
fancier algorithms that are correspond-
ingly slower to execute. But the output
of this pipeline stage is usually a parse
tree of some sort.

 19

You can get a hell of a lot farther as a
professional programmer just by knowing
that much. Even if you have no idea
how the rest of the compilation works,
you can make practical use of tools or
algorithms that produce a parse tree. In
fact, parsing alone can help you solve
Situations #1 through #4 above.

If you don’t know how parsing works,
you’ll do it badly with regular expres-
sions, or if you don’t know those, then
with hand-rolled state machines that are
thousands of lines of incomprehensible
code that doesn’t actually work.

Really.
In fact I used to ask candidates, as a

standard interview question, how they’d
find phone numbers in a tree of HTML
files, and many of them (up to 30%)
chose to write 2500-line C++ programs
as their answer.

At some point, candidates started
telling me they’d read that one in my
blog, which was pretty weird, all things
considered. Now I don’t ask it anymore.

I ask variants of it occasionally, and it
still gets them: you either recognize it as
an easy problem or you get out the swiss
army knife and start looking for a second
to behead you before the pain causes you
to dishonor your family.

C++ does that surprisingly often.
The next big phase is Type Checking.

This is a group of zealous academics (and
their groupies and/or grad students) who
believe that they can write programs
that are smart enough to figure out what
your program is trying to do, and tell you
when you’re wrong. They don’t think of
themselves as AI people, though, oddly
enough, because AI has (wisely) moved
beyond deterministic approaches.

This camp has figured out more or
less the practical limit of what they can
check deterministically, and they have
declared that this is the boundary of
computation itself, beyond the borders
of which you are crossing the outskirts
of civilization into kill-or-be-killed
territory, also occasionally known as The
Awful Place Where People Make Money
With Software.

You should hear them when they’re
drunk at rave parties.

A good friend of mine with a Ph.D.
in languages told me recently that it’s
“very painful” to experience the realiza-
tion that all those years of slaving over
beautiful mathematical purity have more
or less zero bearing on the real world.

The problem – well, one problem – is
the underlying premise, which is appar-
ently that without the Hindley-Milner
type system, or failing that, some crap-ass
type system like Java’s, you will never be
able to write working code; it’ll collapse
under its own weight: a vast, typeless
trap for the unwary adventurer.

They don’t get out much, apparently.
Another problem is that they believe

any type “error”, no matter how insig-
nificant it might be to the operation of
your personal program at this particular
moment, should be treated as a news
item worthy of the Wall Street Journal
front page. Everyone should throw down
their ploughshares and stop working
until it’s fixed. The concept of a type
“warning” never enters the discussion.

Remember when fuzzy logic came
along? Oh, oh, wait — remember when
von Neumann and Stan Ulam introduced
the Monte Carlo method? Oh, right,
I keep forgetting: you were born in
nineteen-ninety something, and you’re
nineteen, and I’m ninety-something.

Well, someday they will realize that
strict determinism has always, always failed,
in every dimensionality-cursed domain to
which it’s ever been applied, and it’s always
replaced by probablistic methods.

Call it “optional static types”, as an
embryonic version of the glorious future.
NBL, anyone?

The third camp, who tends to be the
most isolated, is the code generation
camp. Code generation is pretty straight-
forward, assuming you know enough
recursion to realize your grandparents
weren’t Adam and Eve. So I’m really
talking about Optimization, which is
the art of generating code that is just
barely correct enough that most of your
customers won’t notice problems. Wait,
sorry, that’s Amazonization. Optimiza-
tion is the art of producing correct code
that is equivalent to the naive, expensive
code written by your presumably naive,
expensive programmers.

I’d call compiler optimization an
endless chasm of eternal darkness, except
that it’s pretty fun. So it’s an endless
chasm of fun eternal darkness, I guess.
But you can take it to extremes you’d
never guess were possible, and it’s a
fertile, open research field, and when
they “finish”, they’ll be in the same place
the Type Checking camp wants to be,
namely AI experts.

By which I mean Machine Learning,
since the term “AI” smacks of not just
determinism, but also a distinct lack of
VC funding.

In any case, the three camps don’t
really mingle much, and all of them
have a valid claim at calling themselves
“compiler experts” at raves.

The Dark Side of Compilers
One of the reasons it took me so long to
write this ridiculous blog entry is that I
wanted to go write a compiler for myself
before I spouted off about them.

Done!
Well, sort of. Actually, “not done”

would be more accurate, since that, as
I’ve found, is the steady state for compil-
ers everywhere.

Without giving any details away, as
that would be premature, I took a stab
at writing an interpreter for a useful
language, using another useful language,
with the output being useful bytecode
for a useful platform.

20 PROGRAMMING

It was fun. It went pretty fast. I
learned a lot, even though I’d taken com-
pilers twice in school 15 years ago, and
even though I’ve gradually taught myself
about compilers and programming
languages over the past 5 years or so.

I still learned a lot just by doing it.
Unfortunately, writing a compiler

creates a living thing. I didn’t realize this
going into it. I wasn’t asking for a baby.
It was a complete surprise to me, after
20-odd years of industry experience, that
even writing a simple interpreter would
produce a lifetime of work.

Go figure.
I credit the phrase “a lifetime of work”

to Bob Jervis, a friend of mine who
happens to be the original author of
Turbo C (with which I myself learned to
program), and a damn good, even world-
class compiler writer.

He gave a tech talk recently (Google
does that a LOT) in which he pointed out
that even just the set of features the audi-
ence had asked for was a lifetime of work.

This phrasing resonated deeply with
me. It was similar to my realization about
18 months back that I only have a small
finite number of 5-year projects left,
and I have to start choosing them very
carefully. After writing my own “produc-
tion interpreter”, I realized that the work
remaining was unbounded.

I mean it. Unbounded.
So from one perspective, I suppose I

should just release what I’ve got and start
marketing it, so other people will jump
on board and start helping out. On the
other hand, I started this particular side-
project not to create a lifetime of work
for myself (far from it), but to make
sure I knew enough about compilers to
be able to rant semi-intelligently about
them, after a few glasses of wine, to a
quarter million readers.

So I’d at least better finish the byte
compiler first.

I’ll get there. It’ll be neat. I’ve only
described this crazy little side project
to a handful of people, and they reacted
pretty uniformly by yelling “WTF????”
You know, the kind of shout you’d yell
out if you discovered the most sane
person you knew in the entire world
trying to stuff a lit stick of dynamite into
their mouth.

That’s compilers for ya. You can hardly
attempt one without trying to change
the world in the process.

That’s why you need to learn how
they work. That’s why you, yes you
personally, need to write one.

It’s not as hard as you think, except for
the fact that it will turn into a lifetime of
work. It’s OK. You can walk away from
it, if you want to. You probably won’t
want to. You may be forced to, due to
time constraints, but you’ll still be a far
better programmer for the effort.

You’ll be able to fix that dang syntax
highlighting.

You’ll be able to write that doc extractor.
You’ll be able to fix the broken

indentation in Eclipse.
You won’t have to wait for your tools

to catch up.
You might even stop bragging about

how smart your tools are, how amazing
it is that they can understand your code
— which, if I may say so, isn’t something
I’d go broadcasting quite so loudly, but
maybe it’s just me.

You’ll be able to jump in and help fix
all those problems with your favorite
language. Don’t even try to tell me your
favorite language doesn’t have problems.

You’ll be able to vote with confidence
against the tired majority when some of
the smartest people in the world (like,
oh, say, James Gosling and Guy Steele)
try to introduce non-broken closures and
real extensibility to the Java community.
Those poor Java Community schmucks. I
pity them all. Really I do.

Heck, you might even start eating rich
programmer food. Writing compilers is
only the beginning; I never claimed it
was the end of the road. You’ll finally be
able to move past your little service APIs
and JavaScript widgets, and start helping
to write the program that cures cancer,
or all viruses worldwide, or old age and
dying. Or even (I’m really going out on a
limb here) the delusion of Static Typing
as a deterministic panacea.

If nothing else, you’ll finally really
learn whatever programming language
you’re writing a compiler for. There’s no
other way. Sorry!

And with that, I suppose I should
wrap up. I’m heading to Foo Camp in
the morning, and I have no idea what to
expect, but I have a pretty good guess
that there won’t be much discussion of
compilers, except hopefully from GVR
vis a vis Python 3000. That might be cool.

If you don’t know compilers, don’t
sweat it. I still think you’re a good
programmer. But it’s good to have
stretch goals!

But What’s The Most Important
CS Course?
Typing 101. Duh.

Hie thee hence.

Steve Yegge is a Staff Software Engineer
at Google. Prior to Google he worked at
Amazon.com as a Senior Software Development
Manager. He earned his Computer Science
degree from the University of Washington, and
has over twenty years of experience as a software
developer, dev manager, programmer hobby-
ist and tech blogger. Steve's current interests
include Clojure, GNU Emacs and GNU Lilypond.

Reprinted with permission of the original author. First appeared in http://hn.my/compiler/.

 21

http://dropbox.com/jobs

22 PROGRAMMING

I HEAR A LOT of talk these days about TDD and BDD
and Extreme Programming and SCRUM and stand
up meetings and all kinds of methodologies and

techniques for developing better software, but it's all
irrelevant unless the software we're building meets the
needs of those that are using it. Let me put that another
way. A perfect implementation of the wrong specifica-
tion is worthless. By the same principle a beautifully
crafted library with no documentation is also damn near
worthless. If your software solves the wrong problem or
nobody can figure out how to use it, there's something
very bad going on.

Fine. So how do we solve this problem? It's easier than
you think, and it's important enough to warrant its very
own paragraph.

Write your Readme first.
First. As in, before you write any code or tests or behav-

iors or stories or ANYTHING. I know, I know, we're
programmers, dammit, not tech writers! But that's where
you're wrong. Writing a Readme is absolutely essential to
writing good software. Until you've written about your
software, you have no idea what you'll be coding. Between
The Great Backlash Against Waterfall Design and The
Supreme Acceptance of Agile Development, something
was lost. Don't get me wrong, waterfall design takes things
way too far. Huge systems specified in minute detail end
up being the WRONG systems specified in minute detail.
We were right to strike it down. But what took its place is

too far in the other direction. Now we have projects with
short, badly written, or entirely missing documentation.
Some projects don't even have a Readme!

This is not acceptable. There must be some middle
ground between reams of technical specifications and
no specifications at all. And in fact there is. That middle
ground is the humble Readme.

It's important to distinguish Readme Driven Develop-
ment from Documentation Driven Development. RDD
could be considered a subset or limited version of DDD.
By restricting your design documentation to a single file
that is intended to be read as an introduction to your soft-
ware, RDD keeps you safe from DDD-turned-waterfall
syndrome by punishing you for lengthy or overprecise
specification. At the same time, it rewards you for keeping
libraries small and modularized. These simple reinforce-
ments go a long way towards driving your project in the
right direction without a lot of process to ensure you do
the right thing.

By writing your Readme first you give yourself some
pretty significant advantages:

Most importantly, you're giving yourself a chance to
think through the project without the overhead of
having to change code every time you change your
mind about how something should be organized or
what should be included in the Public API. Remember
that feeling when you first started writing automated

Readme Driven
Development

By TOM PRESTON-WERNER

Reprinted with permission of the original author. First appeared in http://hn.my/rdd/.

http://hn.my/rdd/

 23

code tests and realized that you caught all kinds of
errors that would have otherwise snuck into your
codebase? That's the exact same feeling you'll have
if you write the Readme for your project before you
write the actual code.
As a byproduct of writing a Readme in order to
know what you need to implement, you'll have a
very nice piece of documentation sitting in front of
you. You'll also find that it's much easier to write
this document at the beginning of the project when
your excitement and motivation are at their highest.
Retroactively writing a Readme is an absolute drag,
and you're sure to miss all kinds of important details
when you do so.
If you're working with a team of developers you get
even more mileage out of your Readme. If everyone
else on the team has access to this information
before you've completed the project, then they
can confidently start work on other projects that
will interface with your code. Without any sort of
defined interface, you have to code in serial or face
reimplementing large portions of code.
It's a lot simpler to have a discussion based on some-
thing written down. It's easy to talk endlessly and
in circles about a problem if nothing is ever put to
text. The simple act of writing down a proposed
solution means everyone has a concrete idea that
can be argued about and iterated upon.

Consider the process of writing the Readme for
your project as the true act of creation. This is where
all your brilliant ideas should be expressed. This docu-
ment should stand on its own as a testament to your
creativity and expressiveness. The Readme should be
the single most important document in your codebase;
writing it first is the proper thing to do.

Tom Preston-Werner lives in San Francisco and is a cofounder
of GitHub and the inventor of Gravatars. He loves giving talks
about entrepreneurship, writing Ruby and Erlang, and moun-
tain biking through the Bay Area's ancient redwood forests.

“The Readme should be the single most
important document in your codebase;
writing it first is the proper thing to do.”

Reprinted with permission of the original author. First appeared in http://hn.my/rdd/.

http://hn.my/rdd/

24 PROGRAMMING

EVERY TIME THERE is a link to a
resource even remotely related
to academia, it’s available only

in a weird format that looks like it was
invented by Martians three thousand
years ago while they were stuck on a
strange planet light-years away from
home. It’s never something you can
easily open – it’s not HTML, not a Word
document, not a text file. You’re lucky if
it’s PDF. Most of the time it’s PostScript
or a mysterious DVI format that nobody
outside of a select group of High Priests
of Martianic Church knows how to open.

Reading the article ends up being
a scavenger hunt for utilities found
on obscure FTP mirrors of some .edu
domains that end up having a user inter-
face from Stone Age. While you search
for these utilities you will undoubtedly
see a few references to LaTeX which at
first glance appears to be some document
format invented by the aforementioned
group of homesick Martians and requires
ten pages just to explain what exactly it
is it does. When you finally manage to
open the file you’re greeted by a word
“abstract” instead of a word “summary”
and as you try to scroll through the
article you find that the scroll wheel
abruptly stops at the end of the first

page. You glance at the toolbar to find
a “next page” button and see a row of
various arrows with no immediately deci-
pherable meaning. This is the final straw.
You curse the ivory towers inhabitants
in all known tongues for wasting ten
minutes of your life, close the document
without ever actually really looking at it,
and go on with your life trying to block
this painful encounter forever.

That’s a pity. A little bit more persis-
tence and you would have discovered a
document processing nirvana.

PostScript
The first thing critical reading courses
teach is that analyzing a piece of text
involves analyzing its author’s intent.
Who is the author? What is the target
audience? Why is the author writing to
the target audience in the first place?
If you’re trying to understand a piece
of writing, answering these questions is
half the battle. For example, the target
audience for a blogger is anyone who
will listen. Bloggers tend to write to
drive traffic as high as they can either to
make money off advertising and affiliate
programs, or to become famous, or, as
yours truly, as part of a treacherous secret
plot to take over the world.

Of course academic writers aren’t
bloggers. They couldn’t care less about
traffic or adsense. Most of the time
they have too much on their minds to
think about becoming famous. They’re
not even trying to take over the world.
The only thing they dream about in the
showers and in their sleep and on their
way to work is getting published.

Whenever someone tries to go
anywhere in academia beyond the
undergraduate degree, they hear this
phrase far more than they can handle
without going insane. “I need to get
published.” “Are you published?” “Where
is he published?” Published, published,
published. The Holy Grail for anyone in
academia is getting published in a pres-
tigious journal in their field. If you’re a
graduate student, that’s what you need to
get a PhD someone except your mother
will care about. If you already have a
PhD, that’s what you need to get a job as
a professor in a good university. If you’re
already a professor, that’s what you need
to get and keep government grants for
research. Even if you’re an undergradu-
ate, publishing an article nobody will
ever read in a journal nobody has ever
heard of can help you get into a good
graduate program.

What Is LaTeX And
Why You Should Care

By SLAVA AKHMECHET

Reprinted with permission of the original author. First appeared in http://hn.my/latex/.

http://hn.my/latex/

 25

So, if you’re an academic writer, you
aren’t going to write your article for the
general public. You aren’t even going to
write it for fellow scientists. You’re going
to write it for people who hold your
academic future in their hands – the
journal editors. And journal editors are a
very particular bunch that likes to receive
submissions that adhere to strict guidelines.

I am not familiar with the dark under-
world of journal publishing so I won’t get
into details, but the idea is simple. The
work of the editors eventually ends up
on the table of folks called the publishers.
These are the people that take a piece of
text, feed it into printing machines, get
thousands of copies, and distribute them
to subscribed recipients. The publishers
couldn’t care less about what they’re
printing – they just want to get it in
a format that their printing machines
understand. And this format isn’t a Word
document. Because publishers deal with
huge volumes and very different types of
documents, they want to receive them in
a very specific format. A format that tells
them exactly how and where to print
every dot. They don’t want to hear any-
thing about paragraphs of text or tables
of numeric values. They want to know
how many inches from the left margin
should the printer put the first dot and at
what offset to put the next.

Now, back to the journal editors.
Every day their mailbox contains dozens
of submissions from every poor shmuck
that wants the honor of being published
in their periodical. They have to read
through the submissions and only pick
the best work to make sure they don’t
print something that doesn’t make sense
and make their journal look stupid1.
The last thing they want to deal with
is converting the submissions from
whatever exotic format the authors
decided to write them in to whatever
peculiar format the published requires.
So the journals set strict guidelines – you
can only send submissions in PostScript
or DVI (which incidentally turn out to
be the formats their publishers accept).

Of course if you’re Albert Einstein you
can engrave your submission on a piece of
rock, ship it to the journals via FedEx, and
make them pay the bill. They’ll be head
over heels to accept it and do the format
conversion work. But if you’re Joe Medio-
cre, Ph.D., submitting your tenth paper
in ten years on individual differences
versus social dynamics in the formation
of aquarium fish dominance hierarchies2
to account for how you spent public
funds granted to you by the NSF, you
better submit your paper in PostScript.
You know what’ll happen if you don’t.
You won’t get published this year, the
NSF will take your grants away, you’ll get
kicked out of the faculty without tenure
(why keep you around if you don’t bring
in any research money?), and you won’t
be able to unconditionally get university
pay for the rest of your life without ever
actually producing useful work.

LaTeX
These days there are add-ons for Micro-
soft Word that allow you to save your
documents in PostScript. In the old days,
when Word wasn’t available, people used
a format called LaTeX. It was a struc-
tured human readable format not unlike
XML. People wrote their documents in
text editors using LaTeX tags to specify
sections, subsections, paragraphs, etc.
After they were done with their docu-
ment they ran it through a program that
used stylesheets (conceptually not very
different from CSS) to render a LaTeX
document into another format (more
often than not the end result was Post-
Script but it could just as easily have been
HTML, PDF, DVI, etc.) Back then if you
didn’t like LaTeX you were forced to use
it for a number of reasons. There were no
other alternatives to generate PostScript
files. Even if you could create one directly,
different journals expected different
formatting to fit their overall style. The
only way to accommodate this require-
ment was to use LaTeX along with the
stylesheets the journals provided3.

Now that the old days are long gone
and word processors come preinstalled
with every machine, why should we
care about this remnant of history? The
answer is that remarkably LaTeX is
much better suited for composing and
distributing most types of documents
than any other modern word processor
on the market that I am aware of. Just
like programming languages tend to
converge towards Lisp because it got
things right the first time around, so do
the Word Processors tend to converge
towards LaTeX.

Separation Of Markup And Presentation
When I started writing articles for
defmacro, I did it in Microsoft Word.
This was the word processor I’ve used
since high school, throughout college,
and at work. I saw no reason not to use it
for writing articles for this website. I soon
discovered that I’m not being very pro-
ductive. It turned out that when writing
documents that have valuable content
– documents that cannot be written in
a single evening and that people might
want to read (unlike my college papers),
Microsoft Word hindered me more often
than it managed to provide assistance.
Amazingly, I was far more productive
writing articles directly in XHTML using
Emacs (the best editor I’ve ever used4).

Aside from the obvious requirement
to be able to efficiently edit text I
needed my word processor to help me
do two things: specify the structure of
my document as I write it and let me
style it later. Surprisingly Microsoft Word
isn’t very good for creating documents
in this manner. While it supports styling
and structural markup, it doesn’t in any
way encourage it. By default it’s much
easier to mark a selection as bold than
to emphasize it using markup. XHTML,
on the other hand, is different. I can
only specify structure. If I try to use old
HTML styling tags, it doesn’t validate.
This way I can focus on the content of
my document and its structure. I can
style it with CSS later. I can even provide
different styles for my site, for printing,

Reprinted with permission of the original author. First appeared in http://hn.my/latex/.

http://hn.my/latex/

and for other sites that might want to
publish my articles.

It is common wisdom among program-
mers that information and the way it’s
presented should be separated. A well
defined boundary between markup and
styling allows to easily add other ways
to present information. Additionally, it
greatly enhances the ability to change
information independently from its
presentation. These are both very desir-
able properties and they are not limited
to web pages. None of the mainstream
word processors that I am aware of
promote this paradigm. If I want to
write documents this way I’m left with
relatively few alternatives. XHTML and
CSS are one, but they’re relatively new
technologies designed specifically for
document distribution over HTTP. There
is no easy way to convert my XHTML
document along with appropriate CSS
stylesheets to a single file I could send
someone over e-mail. LaTeX does

better. Once I create a LaTeX document
I can easily convert it to any format I
am interested in, including XHTML
and Microsoft Word Document. I can
compose documents the way I like and
distribute them to the world in any
format that happens to be fashionable at
the time. As a bonus LaTeX has tags for
almost everything I may want to specify
in my documents. And if it doesn’t, I can
extend it with my own.

Modern office suites are already
moving towards markup and styling. It
will take them many years to embrace
this paradigm completely and shed the
legacy of styling interleaved with the
document – a very poor design for obvi-
ous reasons. On the other hand, LaTeX is
here today and there is no reason for us to
to wait for word processors to catch up.

Open Document Format
For the past couple of years there has
been a big debate sparked by the Open-
Document Format Alliance. Companies
and governments decided they no longer
want to be restricted to using Microsoft
Word to edit and distribute their docu-
ments and came up with a radical idea
that their information should be stored
in an open format in order to allow
competing word processors to have a real
chance to win market share. Of course
OpenDocument isn’t here yet. Nobody
can agree on the tags and Microsoft
doesn’t want to let go of market domina-
tion it has achieved by locking people
into their format.

There is no reason for OpenDocu-
ment Format Alliance to reinvent the
wheel and there is no reason for us
to wait until they’re done. LaTeX is
already here. When you create your next
document, let it rise to the occasion. The
format is open and has a wide variety

http://pasqualedsilva.com/hire

PagerDuty www.pagerduty.com

Wake	 up,	 your	 systems	
are	 down!
PagerDuty	 adds	 Phone	 and	 SMS	 alerting	 to	
your	 existing	 monitoring	 tools.

Use	 the	 discount	 code	
BEAPAGERHERO	
and	 get	 10%	 off.

of standard tags. It is human readable
and can be modified in a multitude of
editors from Notepad, to Emacs, to visual
editors like Lyx. Additionally, LaTeX
has a wide pool of available importers
and exporters – you can import pretty
much any document into LaTeX, modify
it, and export it back into any format
you like (from Word to HTML to PDF).
LaTeX has everything an open, portable,
extensible format should have. The only
thing missing is the hype.

What’s next?
Word Processors are the least useful
components of modern office suits. An
argument about Microsoft Word vs.
Word Perfect is a false dilemma as there
are better alternatives. Don’t let LaTeX
intimidate you. Once you play around
with it and take some time to understand
it, it becomes obvious that it’s a very
natural design – another proof that
most great software was designed early

in computer history. It may seem alien
and dated but behind the cover there
is a very powerful way to compose and
distribute documents. Do a google search
on LaTeX and you’ll find plenty of tools
equipped to edit LaTeX documents
(this is somewhat like a multitude of
HTML editors out there). Alternatively,
if you don’t feel like learning LaTeX
tags, download Lyx – a visual document
processor that takes care of the details
behind the scenes.

Notes
1. I am, of course, referring to WMSCI

2005, a conference that accepted a
paper generated by SCIgen, a random
paper generator. Surely journal editors
all over the world doubled their
vigilance after this incident.

2. I’m not making this up. Really.
3. LaTeX is a de facto standard for

publishing in academic journals. Most
journals provide LaTeX stylesheets

that allow you to format your paper
according to specific requirements
automatically.

4. One of the goals of this website
is explaining the benefits of good
technologies that are generally
considered tricky to explain to the
uninitiated (the examples I’ve already
written about are Lisp and Functional
Programming). In this sense Emacs
fits right in. I hope to write an article
about it some time in the future.

Slava has built technology for infrastructure
software, consumer web, and financial compa-
nies. He is interested in high level programming
languages, compilers, data storage systems, and
software start-ups. If he had to eat one type of
food for the rest of his life, it would be sushi. He
is now on leave from the Ph.D. program in Com-
puter Science at Stony Brook University, working
on RethinkDB.

http://www.pagerduty.com

28 PROGRAMMING

JQUERY’S $(document).ready() EVENT is something that you
probably learned about in your earliest exposure to jQuery
and then rarely thought about again. The way it abstracts

away DOM timing issues is like a warm security blanket for code
running in a variety of cold, harsh browser windows.

Between that comforting insurance and the fact that deferring
everything until $(document).ready() will never break your code,
it’s understandable not to give much thought to its necessity.
Wrapping $(document).ready() around initialization code becomes
more habit than conscious decision.

However, what if $(document).ready() is slowing you down? In
this post, I’m going show you specific instances where postponing
startup code until the document’s ready event slows perceived
page load time, could leave your UI needlessly unresponsive, and
even causes initialization code to run slower than necessary.

Example: live()
One of the most popular uses for jQuery’s live() is to maintain
event handlers on elements that are dynamically created and
destroyed over time. Instead of juggling traditional bind() handlers
in response to those changes, live()’s event delegation allows you
to declare handlers once up-front. Whether targeted elements
exist at declaration time, or in the future, one live() handler will
apply to them all.

Imagine that we have an application with several slideToggling
sidebar blocks which may be dynamically added and removed
while the user interacts with the page. You’ve probably seen
live() used like this to simplify handling those future changes:

<html>
<head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript">
 <!-- The sidebar event delegation is not registered
"here"... -->
 $(document).ready(function () {
 $('#Sidebar h3').live('click', function () {
 $(this).next().slideToggle();
 });
 });
 </script>
</head>
<body>
 <div id="Sidebar">
 <h3>Title 1</h3>
 <p>Text 1</p>

 <h3>Title 2</h3>
 <p>Text 2</p>
 </div>
</body>
<!-- ...but roughly down "here" -->
</html>

That usage is natural when you’re hedging against AJAX-driven
changes in the future. The volatility that you’re concerned with
won’t happen until after the page loads, so it’s intuitive to postpone
worrying about them until after the document’s ready event.

However, what would happen if you treated your HTML
document’s initial load process the same way as any other dynamic
modifications?

Don’t Let jQuery’s
$(document).ready()

Slow You Down
By DAVE WARD

 29

<html>
<head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript">
 <!-- The event handler is wired up "here"; immediately -->
 $('#Sidebar h3').live('click', function () {
 $(this).next().slideToggle();
 });
 </script>
</head>
<body>
 <div id="Sidebar">
 <h3>Title 1</h3>
 <!-- At this point, Title 1 is ready for action. -->
 <p>Text 1</p>

 <h3>Title 2</h3>
 <!-- Ditto for Title 2 at this point -->
 <p>Text 2</p>
 </div>
</body>
</html>

Not only does that work just as well as postponing the live()
declaration until the document’s ready event, but now the handlers
are active during the page loading process. As the browser loads
each <h3> element and adds it to the DOM, our click events are
immediately ready to be handled.

Benefit: A more responsive UI
To see where the latter approach shines, imagine the page was very
large and took several seconds to load, or that a script reference
somewhere on the page was timing out. In scenarios like those,
jQuery’s document ready event may not fire until considerably
later than the targeted elements are visible to your users.

<html>
<head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript">
 <!-- The event handler is wired up "here"; immediately -->
 $('#Sidebar h3').live('click', function () {
 $(this).next().slideToggle();
 });

 <!-- This handler isn't active until... -->
 $(document).ready(function() {
 $('#Sidebar p').live('click', function() {
 // Important magic goes here.
 });
 });
 </script>
</head>

<body>
 <div id="Sidebar">
 <h3>Title 1</h3>
 <p>Text 1</p>
 </div>

 <script src="http://twitter.com/fail-whale.js"></script>
 <!-- ...way down here, *after* the script references
times out. -->
</body>
</html>

Why hold live() back until the document is ready? It doesn’t
matter if the selector matches any elements initially; they will
immediately become active as they are rendered and appear on
the page.

Benefit: Improved performance
A common criticism of using live() for event delegation is
that it requires you to perform an initial selection of all of the
elements that it targets. Since event delegation doesn’t require
any initial setup on each individual element, this pre-selection is
a wasteful performance drag when there are dozens or hundreds
of elements targeted.

However, if you register your live() handlers before those
elements exist on the page, there is no performance penalty
whatsoever. The event delegation can be registered very quickly,
yet still works exactly the same as if you had waited until the
ready event.

<html>
<head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript">
 <!-- Fast. Runs before any of the TRs exist. -->
 $('#MyTable tr').live('click', function () {
 $(this).toggleClass('highlight');
 });

 <!-- Slow. Doesn't run until the table is rendered. -->
 $(document).ready(function() {
 $('#MyTable tr').live('click', function () {
 $(this).toggleClass('highlight');
 });
 });
 </script>
</head>
<body>
 <table>
 <!-- Hundreds or thousands of rows here -->
 </table>
</body>
</html>

30 PROGRAMMING

Example: $.ajax()
Another situation where $(document).ready() may be holding
you back is when you make an AJAX request immediately as a
page is loading. Displaying recent Twitter updates is a common
example of that:

<html>
<head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript">
 $(document).ready(function() {
 <!-- $.getJSON() request to retrieve Twitter updates. -->
 });
 </script>
</head>
<body>
 <!-- A typically large page here -->
</body>
<!-- The Twitter request doesn't *begin* until here. -->
</html>

Even though the $.getJSON() snippet is located at the beginning
of the page, it isn’t executed until the entire page has loaded and
the ready event has fired. Why wait until the page is loaded in
order to begin the AJAX request?

<html>
<head>
 <script type="text/javascript" src="jquery.js"></script>
 <script type="text/javascript">
 <!-- $.getJSON() request to retrieve Twitter updates. -->
 <!-- The request begins immediately. -->
 </script>
</head>
<body>
 <!-- A typically large page here -->
</body>
</html>

This is a nice improvement even when you’re making a request
to a local endpoint, but is even more beneficial here because
third-party requests circumvent the browser’s per-domain request
limit. That third-party request to Twitter runs in parallel with the
rest of the page’s normal loading timeline.

Better yet, since the dynamic script element injection used in a
JSONP request is asynchronous, there’s no drawback to initiating
the request early. Even if Twitter is slow or down (imagine that),
the request won’t drag the page down.

Benefit: Performance
To show you a visualization of how the previous two approaches
differ, I used my own site as a guinea pig. First, I wrapped a
$.getJSON() request to Twitter in $(document).ready() and placed
it in the <head> of my site template.

This is how the site loads in that configuration, taken from
Firebug’s Net tab:

Now, here’s the same $.getJSON() request, located in the
same position in the <head> of the page, but without the
$(document).ready() wrapper:

We just pulled a bit of performance right out of thin air. This
isn’t simply perceived performance, which is nice enough, but a
truly faster overall load time.

Note: You might notice that the ready event came later in the second
example and be concerned that it was due to the early $.getJSON()
request. It wasn’t. If you look closely, a blocking <script> reference
to one of the page’s local scripts took unusually long in the second
run, which pushed everything back about 700ms longer than usual.

Reprinted with permission of the original author. First appeared in http://hn.my/jquery/.

http://hn.my/jquery/

Conclusion
I think the preceding examples are compelling, but I’m also not
suggesting that this is appropriate in every case. Often, it’s best to
move every bit of JavaScript to the bottom of your pages (e.g. a
public-facing, non-application site like this one). When your scripts
are located at the bottom of the page, it doesn’t matter whether
you use $(document).ready() or not; everything is effectively
running when the document ready event fires anyway.

However, when you’re building the type of script-heavy “appli-
cation” that behooves your placing script references in the docu-
ment’s <head>, keeping these ideas in mind can have a tangible
impact on the performance of your application.

Dave Ward is an independent consultant in Atlanta, Georgia, specializing
in creating functional, interactive web applications with HTML, CSS, and
JavaScript. With over fifteen years’ experience developing websites, he has
been recognized as a Microsoft ASP.NET MVP and a member of the ASP Insid-
ers. You can find him online at http://encosia.com or @encosia on Twitter.

http://mixergy.com
http://encosia.com
http://twitter.com/encosia

32 PROGRAMMING

SSH IS ONE of the most widely used protocols for connecting
to remote shells. While there are numerous SSH clients
the most-used still remains OpenSSH’s ssh. There is a

plethora of tips and tricks that can be used to make your experi-
ence even better than it already is. Read on to discover some of
the best tweaks to your favorite SSH client.

Adding A Keep-Alive
A keep-alive is a small piece of data transmitted between a client
and a server to ensure that the connection is still open or to keep
the connection open. Many protocols implement this as a way of
cleaning up dead connections to the server. If a client does not
respond, the connection is closed.

SSH does not enable this by default. There are pros and cons
to this. A major pro is that under a lot of conditions if you discon-
nect from the Internet, your connection will be usable when you
reconnect. For those who drop out of WiFi a lot, this is a major
plus when you discover you don’t need to login again.

For those who get the following message from their SSH client
when they stop typing for a few minutes it’s not as convenient:

symkat@symkat:~$ Read from remote host symkat.com:
Connection reset by peer
Connection to symkat.com closed.

This happens because your router or firewall is trying to clean
up dead connections. It’s seeing that no data has been transmit-
ted in N seconds and falsely assumes that the connection is no
longer in use.

To rectify this you can add a Keep-Alive. This will ensure that
your connection stays open to the server and the firewall doesn’t
close it.

To make all connections from your shell send a keepalive add
the following to your ~/.ssh/config file:

KeepAlive yes
ServerAliveInterval 60

The con is that if your connection drops and a KeepAlive packet
is sent SSH will disconnect you. If that becomes a problem, you
can always actually fix the Internet connection.

Multiplexing Your Connection
Do you make a lot of connections to the same servers? You may
not have noticed how slow an initial connection to a shell is. If you
multiplex your connection you will definitely notice it though.
Let’s test the difference between a multiplexed connection using
SSH keys and a non-multiplexed connection using SSH keys:

Without multiplexing enabled:
$ time ssh symkat@symkat.com uptime
 20:47:42 up 16 days, 1:13, 3 users, load average: 0.00,
0.01, 0.00

real 0m1.215s
user 0m0.031s
sys 0m0.008s

With multiplexing enabled:
$ time ssh symkat@symkat.com uptime
 20:48:43 up 16 days, 1:14, 4 users, load average: 0.00,
0.00, 0.00

real 0m0.174s
user 0m0.003s
sys 0m0.004s

SSH: Tips And Tricks You Need
By SYMKAT

 33

We can see that multiplexing the connection is much faster, in
this instance on an order of 7 times faster than not multiplexing
the connection. Multiplexing allows us to have a “control” con-
nection, which is your initial connection to a server, this is then
turned into a UNIX socket file on your computer. All subsequent
connections will use that socket to connect to the remote host. This
allows us to save time by not requiring all the initial encryption,
key exchanges, and negotiations for subsequent connections to
the server.

To enable multiplexing do the following:
In a shell:

$ mkdir –p ~/.ssh/connections
$ chmod 700 ~/.ssh/connections

Add this to your ~/.ssh/config file:

Host *
ControlMaster auto
ControlPath ~/.ssh/connections/%r_%h_%p

A negative to this is that some uses of ssh may fail to work with
your multiplexed connection. Most notably commands which use
tunneling like git, svn or rsync, or forwarding a port. For these you
can add the option –oControlMaster=no. To prevent a specific
host from using a multiplexed connection add the following to
your ~/.ssh/config file:

MasterControl no

There are security precautions that one should take with this
approach. Let’s take a look at what actually happens when we
connect a second connection:

$ ssh -v -i /dev/null symkat@symkat.com
OpenSSH_4.7p1, OpenSSL 0.9.7l 28 Sep 2006

ssh

debug1: Applying options for *
debug1: auto-mux: Trying existing master
Last login:
symkat@symkat:~$ exit

As we see no actual authentication took place. This poses a
significant security risk if running it from a host that is not trusted,
as a user who can read and write to the socket can easily make the
connection without having to supply a password. Take the same
care to secure the sockets as you take in protecting a private key.

Using SSH As A Proxy
Even Starbucks now has free WiFi in its stores. It seems the world
has caught on to giving free Internet at most retail locations.
The downside is that more teenagers with “Got Root?” stickers
are camping out at these locations running the latest version
of wireshark.

SSH’s encryption can stand up to most any hostile network,
but what about web traffic?

Most web browsers, and certainly all the popular ones, support
using a proxy to tunnel your traffic. SSH can provide a SOCKS
proxy on localhost that tunnels to your remote server with the –D
option. You get all the encryption of SSH for your web traffic, and
can rest assured no one will be capturing your login credentials
to all those non-ssl websites you’re using.

$ ssh –D1080 -oControlMaster=no symkat@symkat.com
symkat@symkat:~$

Now there is a proxy running on 127.0.0.1:1080 that can be
used in a web browser or email client. Any application that sup-
ports SOCKS 4 or 5 proxies can use 127.0.0.1:1080 to tunnel
its traffic.

$ nc -vvv 127.0.0.1 1080
Connection to 127.0.0.1 1080 port [tcp/socks] succeeded!

Using One-Off Commands
Often times you may want only a single piece of information from
a remote host. “Is the file system full?” “What’s the uptime on the
server?” “Who is logged in?”

Normally you would need to login, type the command, see the
output and then type exit (or Control-D for those in the know.)
There is a better way: combine the ssh with the command you
want to execute and get your result:

$ ssh symkat@symkat.com uptime
 18:41:16 up 15 days, 23:07, 0 users, load average: 0.00,
0.00, 0.00

This executed the ssh symkat.com, logged in as symkat, and
ran the command “uptime” on symkat. If you’re not using SSH
keys then you’ll be presented with a password prompt before the
command is executed.

$ ssh symkat@symkat.com ps aux | echo $HOSTNAME
symkats-macbook-pro.local

This executed the command ps aux on symkat.com, sent the
output to STDOUT, a pipe on my local laptop picked it up to
execute “echo $HOSTNAME” locally. Although in most situa-
tions using auxiliary data processing like grep or awk will work
flawlessly, there are many situations where you need your pipes

34 PROGRAMMING

and file IO redirects to work on the remote system instead of the
local system. In that case you would want to wrap the command
in single quotes:

$ ssh symkat@symkat.com 'ps aux | echo $HOSTNAME'
symkat.com

As a basic rule if you’re using > >> < – or | you’re going to want
to wrap in single quotes.

It is also worth noting that in using this method of executing
a command some programs will not work. Notably anything that
requires a terminal, such as screen, irssi, less, or a plethora of other
interactive or curses based applications. To force a terminal to be
allocated you can use the –t option:

$ ssh symkat@symkat.com screen -r
Must be connected to a terminal.
$ ssh –t symkat@symkat.com screen –r
$ This worked!

Making SSH A Pipe
Pipes are useful. The concept is simple: take the output from one
program’s STDOUT and feed it to another program’s STDIN.
OpenSSH can be used as a pipe into a remote system. Let’s say
that we would like to transfer a directory structure from one
machine to another. The directory structure has a lot of files and
sub directories.

We could make a tarball of the directory on our own server
and scp it over. If the file system this directory is on lacks the
space though we may be better off piping the tarballed content
to the remote system.

$ ls content/
1 18 27 36 45 54 63 72 81 90
10 19 28 37 46 55 64 73 82 91
100 2 29 38 47 56 65 74 83 92
11 20 3 39 48 57 66 75 84 93
12 21 30 4 49 58 67 76 85 94
13 22 31 40 5 59 68 77 86 95
14 23 32 41 50 6 69 78 87 96
15 24 33 42 51 60 7 79 88 97
16 25 34 43 52 61 70 8 89 98
17 26 35 44 53 62 71 80 9 99

$ tar -cz content | ssh symkat@symkat.com 'tar -xz'
$ ssh symcat@symkat

symkat@lazygeek:~$ ls content/
1 14 2 25 30 36 41 47 52 58 63 69 74 8 85
90 96
10 15 20 26 31 37 42 48 53 59 64 7 75 80 86
91 97
100 16 21 27 32 38 43 49 54 6 65 70 76 81 87
92 98
11 17 22 28 33 39 44 5 55 60 66 71 77 82 88
93 99
12 18 23 29 34 4 45 50 56 61 67 72 78 83 89
94
13 19 24 3 35 40 46 51 57 62 68 73 79 84 9
95

What we did in this example was to create a new archive (-c)
and to compress the archive with gzip (-z). Because we did not
use –f to tell it to output to a file, the compressed archive was send
to STDOUT. We then piped STDOUT with | to ssh. We used a
one-off command in ssh to invoke tar with the extract (-x) and
gzip compressed (-z) arguments. This read the compressed archive
from the originating server and unpacked it into our server. We
then logged in to see the listing of files.

Additionally, we can pipe in the other direction as well. Take for
example a situation where you with to make a copy of a remote
database, into a local database:

symkat@chard:~$ echo "create database backup" | mysql
-uroot -ppassword
symkat@chard:~$ ssh symkat@symkat.com 'mysqldump -udbuser
-ppassword symkat' | mysql -uroot -ppassword backup
symkat@chard:~$ echo use backup;select count(*) from
wp_links;" | mysql -uroot -ppassword
count(*)
12
symkat@chard:~$

What we did here is to create the database “backup” on our
local machine. Once we had the database created we used a
one-off command to get a dump of the database from symkat.
com. The SQL Dump came through STDOUT and was piped
to another command. We used mysql to access the database, and
read STDIN (which is where the data now is after piping it) to
create the database on our local machine. We then ran a MySQL
command to ensure that there is data in the backup table. As we
can see, SSH can provide a true pipe in either direction.

Reprinted with permission of the original author. First appeared in http://hn.my/ssh/.

http://hn.my/ssh/

 35

Using a Non Standard Port
Many people run SSH on an alternate port for one reason or
another. For instance, if outgoing port 22 is blocked at your college
or place of employment you may have ssh listen on port 443.

Instead of saying ssh –p443 you@yourserver.com you can add
a configuration option to your ~/.ssh/config file that is specific
to yourserver.com:

Host yourserver.com
Port 443

You can extrapolate from this information further that you
can make ssh configurations specific to a host. There is little
reason to use all those –oOptions when you have a well-written
~/.ssh/config file.

SymKat is an avid cook, Perl hacker, & Linux sysadmin with experience
from major web hosting and content delivery companies who currently
resides in Los Angeles, California.

http://rapportive.com

Reprinted with permission of the original author. First appeared in http://hn.my/quitjob/.

36 SPECIAL

In Praise Of
Quitting Your Job
By BEN PIERATT

SPECIAL

http://hn.my/quitjob/

 37

I WROTE THIS EMAIL to a friend a
few weeks ago, and then the
topic came up again last night
with an old buddy who was

frustrated with his work. He seemed to
appreciate what I had to say, so I figured
it might be worth sharing:

Thinking about your comment at the
end our call. Thought I’d put some words
down. Apologies in advance for the
presumption.

The reason I’m so supportive of you
quitting your job is that I’m intensely
empathetic to your situation and I
believe that you’re doing everyone a
disservice by sticking around.

I’ve worked for a handful of compa-
nies over the course of the last 6 years.
I started all of them with a fair amount
of enthusiasm, but within 5 months of
each I dipped into a depression. By 7
months the work was having a tangible
effect on my mood and outlook, and by
nine months, I’ve quit almost every job
I’ve held. The longest was 12 months at
[Redacted], and that was only because
I wanted my options to vest. I handed
them my resignation on my 366th day.

I always feel like a waste of space in
these situations. Part of the depression
stems from being so useless. Why do I
hate this job so much? What is wrong
with me that I’m so entitled? People the
world over have jobs they don’t like, why
am I unable to stick this out?

I could wax on this for a while (and I
did, but then deleted all the paragraphs),
but I think it comes down to the fact
that, for some people, work is personal.
Personal in the same way that singing or
playing the piano or painting is personal.

As a creative person, you’ve been
given the ability to build things from
nothing by way of hard work over long
periods of time. Creation is a deeply
personal and rewarding activity, which
means that your Work should also be
deeply personal and rewarding. If it’s not,
then something is amiss.

Creation is entirely dependent on
ownership.

Ownership not as a percentage of
equity, but as a measure of your ability
to change things for the better. To build
and grow and fail and learn. This is no
small thing. Creativity is the manifesta-
tion of lateral thinking, and without
tangible results, it becomes stunted.
We have to see the fruits of our labors,
good or bad, or there’s no motivation to
proceed, nothing to learn from to inform
the next decision. States of approval and
decisions-by-committee and constant
compromises are third-party interrup-
tions of an internal dialog that needs to
come to its own conclusions.

Your muse can only be treated as the
secretary of a subcommittee for so long
before she decides to pack up and look
for employment elsewhere. If you aren’t
able to own the product and be creative,
then you aren’t able to do your work,
and if you’re not doing your work then
you’re negating a very real part of your
personality, which is no good for anyone.
No good for you and certainly no good
for your employer.

I’ve come to terms with my own
inherent work issues simply by recogniz-
ing that my weaknesses in one context
are strengths in another. When I am able
to own a project or product, I work hard
and I work well, and I like to believe it
shows in the results. Not everyone can
do this. Not everyone is willing to spend
stupid amounts of hours on a project
simply because they believe in it. This is
worth recognizing.

My point is simply this. From what
little I understand of you and your situa-
tion, I feel like I can empathize. I would
guess that you’re juggling a handful of
self-loathing with a justified sense of
entitlement. This is something that I
came to peace with after I left my last
job, and I get the sense that you’re still
struggling with it.

I suspect that eventually our culture
will catch up with our evolving under-
standing of work ethic and the personal
nature of work in creative fields. In the
meantime there’s going to be a lot of
wasted talent pushing too much effort
in the wrong directions. It is clear to me
and anyone who interacts with you that
a misplacement of your energies is at
everyone’s loss. I hope that you’re able
to recognize this fact and move forward
accordingly.

Ben Pieratt is a graphic designer living in Boston.
His projects include Svpply, Lookwork, and the
Egotist Network.

38 SPECIAL

AMONGST DESIGNERS –
especially print
designers – Gara-
mond is considered

one of the best fonts in existence. It’s
timeless, and very readable. But, because
of the limitations of current display
technologies, it’s not a good font to use
in web copy – even with the advent of
font embedding methodologies such as
TypeKit and Google Font API.

One of the most important principles
behind every good piece of design is that
the designer has to master his or her
medium. With any medium – whether
it’s pencil and paper, steel and glass, or
pixels – the designer has to work with
strengths and limitations. Work with
these characteristics, and the design
stands a chance to be good – work
against them, and there is no chance.

Apple’s lead designer, Jonathan Ive
knows this. He recently said:

The best design explicitly acknowledges
that you cannot disconnect the form
from the material – the material informs
the form…

Medium and Form in Type History
Typography is the perfect vehicle with
which to illustrate this concept through-
out history. From the beginning, the
forms of our letters have been influenced
by the tools we used to create them.

This cuneiform1 inscribed tablet is an
early example of how medium influ-
enced form in written communication.
You can see, looking at these pictograms,
that they are made up of a series of
indentions that are pretty much identi-
cal. This is because they were formed
using a wedge-shaped stylus.

As this language was replaced in the
west by our current roman characters,
and the tools which we used changed, so
did the form of our letters. Some of the
best examples of early typography using
roman characters are from – you guessed
it – the Roman empire.

This is graffiti2 from the ancient city of
Pompeii. It was created using a brush, and
this is apparent in the letterforms. You
can see there’s a great deal of variation in
the strokes that make up the letters, and
they all terminate with a soft point, just
like you would expect from a brush.

Here’s a picture3 I took from Pompeii
that I blogged about several years ago –
dating back to the same time (remember,
this city was frozen in time when it was
buried under volcanic ash in 79AD).
Only this time, the sign was chiseled in
stone – and you can see how this has
influenced the letters: all of the strokes
of the letters are uniform in width, and
to make the ends of those strokes looks
nice – serifs were added. You can see
little spur serifs from where the chisel
was applied perpendicular to the stroke
of each of these letters.

Now, moving more quickly through
history, we have letters from the column
of Trajan4 (which inspired today’s
Trajan font), which were formed first
by brush, then by chisel (it would have
been awkward to chisel letters like the
brush-drawn ones in the earlier Pompeii
example). Then we moved on to lead
and wood-cut printing, which first
imitated work done by scribes with pens.

Design For Hackers:
Why You Don’t Use

Garamond On The Web
By DAVID KADAVY

 39

Once actual drawing tools were a
smaller part of the design equation,
typographers started to get more
theoretical with their designs – creating
constraints of their own – fonts like
Bodoni are geometrically rationalized,
as they were created in a medium (cast
metal) with relatively few restrictions.

A Little Too Much Freedom?
In modern web typography, we still
have the restriction that the letters of
our alphabet take certain forms, but
many restrictions have been removed.
Rather than only having a couple of
fonts available in our typecases, there are
thousands. So, this makes it easy for bad
habits to develop, such as trapping our
information in images, or using fonts that
just aren’t good for the web.

So, what makes a font bad for the
web? There’s the widely-known issue
of availability of fonts on the comput-
ers of our audience members – this,
of course, is why we’re usually using
widely-available fonts like Arial, Verdana,

Georgia, Times New Roman etc.. Now
there are some pretty feasible ways of
using whatever fonts we want – methods
like SIFR, Typekit, and Google’s new
Font API, but that still doesn’t mean
you should use just any font. Even great
classics like Garamond can be a disaster
on the web, so its better to use a modern
font that has been drawn with the screen
in mind.

And the reason behind this is that our
display technology isn’t up to par with
paper. You can see here a comparison of
the great classic font, Garamond, blown
up (as it might look on paper), next to
a detail of what it would be anti-aliased
at 12px height on a modern computer
screen. You can see that it doesn’t look so
good on-screen, because it’s just made up
of a bunch of blocks of color.

The characters on this cuneiform tablet are
similar to one another because they were created
with the same tool

This graffiti was
clearly created
with a brush

The forms of these letters
were influenced by the
chisel that they were
created with

The lettering on the column of Trajan were brushed on, then chiseled

The letterforms of Bodoni are
geometrically rationalized

What a 12px Garamond character looks
like, blown up

1

2

3

4

Pompeii graffiti photo from virtusincertus, http://www.flickr.com/photos/virtusincertus/. Trajan’s Column photo from Silver Tusk, http://www.flickr.com/photos/silver_tusk/

40 SPECIAL

Working With the Screen
So, the popular web fonts (Arial, Ver-
dana, Georgia, and Times New Roman)
are such not only because of their wide
availability, but because they are drawn
with the screen’s limitations in mind.

This Flash animation:
http://www.kadavy.net/experiments.html
that I created illustrates how pixels
distort curvilinear form – such as that of
typography. It’s the same series of con-
centric rings, but as it changes sizes, you
can see that a moiré effect results from
trying to draw these rings out of mere
pixels. So, the most web-appropriate
fonts are drawn with these limitations
in mind.

This illustration shows just what I
mean by that. Georgia reads better on
screen than Garamond primarily because
it has a higher x-height (the height of an
“x”), and – as a result – a larger eye. This
prevents letters such as “e” from becom-
ing muddled and unreadable, and overall
makes the letters actually look larger. The
notes on this illustration are in 9px Ver-
dana with no anti-aliasing; and you can
see those letters read very crisply, as this
font was made for such an application.

Georgia has a huge advantage over
Garamond on-screen because it was
designed to be displayed as such from
the very beginning, when it was designed
by Matthew Carter for Microsoft in
the mid-90’s. This has manifest itself in
sharp serifs on Georgia, rather than more
subtly modeled ones on Garamond. Look
at little curve on the bottom of Gara-
mond. This gets blurred at smaller sizes,
and hurts the legibility of Garamond.

This limitation of screen technol-
ogy has been embraced, and taken to
extremes, though.

Starting in the late 90’s and early 00’s,
we saw lots of pixel fonts being used in
Flash, such as these from Craig Kroeger’s
miniml.com, which are designed to be
used at specific sizes, with no anti-aliasing.

When it was more common for
computers to have only 256 colors,
which caused dithering, designers
embraced that constraint to inform their
designs. Though ostensibly created to
minimize bandwidth (another constraint
of medium), designs that were created
for the5k embraced dithering and lucidly
used every pixel.

The “Web 2.0” design trends of the
last five years or so, are thanks to display
quality and bandwidth improving,
removing some of this constraint. In
2000, 12% of web users had only 256
colors on their monitors – in 2010, 97%
have over 16 million colors (the number
of colors available has a big impact on
how crisply type, images, or gradients are
displayed). This has put into the hands of
designers a color palette beyond that of
CMYK printing, with increased band-
width to push it through.

Additionally, displays are cramming
in more pixels per inch (ppi). The cheap
Dell monitor I’m typing this on is dis-
playing at 100ppi, and my MacBook Pro
is displaying at about 115ppi. Compare
that to the iPhone 4, which displays at an
impressive 326ppi. Now, we’re starting
to get some display technologies that are
approaching the quality of paper when it
comes to displaying letterforms readably.

So, maybe some day Garamond can
make its comeback.

David Kadavy is a freelance Designer, and Presi-
dent of Kadavy, Inc. Though based in Chicago, his
clients include the stars of Silicon Valley, such as
oDesk, UserVoice, and PBworks.

Reprinted with permission of the original author. First appeared in http://hn.my/garamond/.

Georgia is more readable than Garamond on-screen because of its larger x-height

The limitations of the pixel spawned
design methods, such as the dithering used
in this design

Some type designs, like these from miniml.com,
embrace the limitations of the pixel

The sharp edges of the serifs on Georgia make
them display more crisply on-screen

http://www.kadavy.net/experiments.html
http://hn.my/garamond/

 41

FEW PEOPLE OUTSIDE of friends & family knew about
the following at the time it was going on; bring-
ing it up now, long after I’ve left reddit, feels less
self-serving and will hopefully be instructive. This

came up briefly in a talk I gave at MIT, but this feels a lot more
comfortable to write than to speak about.

Steve and I spent every waking hour (and some dreaming, no
doubt) after graduation with reddit somewhere on our minds.
The time we spent working on it together only reinforced the
marriage metaphor everyone uses about cofounders.

My life – and thus Steve’s – was dramatically changed during
those startup months for reasons beyond my control. I’ve lived a
ridiculously fortunate life, so I knew it was only a matter of time
before something was going to knock things a bit off course; I just
didn’t think it’d happen like this.

Just a month after we started working on reddit, Steve and I
were wrapping up a game of WoW around 4am. I’d only been
asleep for an hour when my cellphone rang.

My girlfriend’s mother was on the phone. Her daughter had
been studying abroad in Germany, was due home in just a couple
weeks, and was now in the hospital. She’d fallen out of her apart-
ment window. Five stories.

I spent a good part of our YC summer in Germany beside her
hospital bed. Her mother remained until December when she
finally came home after months of coma, surgeries, recovery, and
rehab. (It’s worth noting that German taxpayers kindly paid for
every day of this world-class medical treatment. Danke.)

I can’t stress what a tremendous recovery she’s made. I had the
honor of attending her graduation from the University of Virginia.
Although we’re no longer together, she remains someone who
consistently inspires me.

Keep Calm And Carry On:
What You Didn’t Know About

The Reddit Story
By ALEXIS OHANIAN

Mobile Notifications
for Everything

api.notifo.com

notifo

42 SPECIAL

Keep calm, carry on.

Little did I know, a couple months after my girlfriend’s fall, I
was due for another call.

My mom called me one Monday morning in September. She
was distraught. Max, our family dog, had just died. Poor boy had
been fighting Cushing’s Syndrome for quite some time; my mom
found him that morning in great distress and rushed him to our
vet. There weren’t very many options.

The most humane thing to do was euthanasia. I never got a
chance to say goodbye to the good boy, but I take solace knowing
he was with my mother, who doted on him like a son once I was
out of the house.

It was hard on all of us, but it was hardest on my mom.
They were supposed to leave that evening for a trip to Norway.

They’d planned it for months.
So I was surprised to get a call from my dad that evening (when

am I going to learn to stop taking out-of-the-blue calls?).
He and mom were in the hospital. In hindsight, her anguish is

possibly what triggered the seizure she had that afternoon, which
led to the MRI that canceled their vacation.

My mother was diagnosed with a class IV Glioblastoma mul-
tiforme. Such an ugly name. I remember the first time I googled
it, hoping I could search my way to a cure. But it basically meant
terminal brain cancer. She was 51 when she was diagnosed.

I flew down to Maryland first thing the next morning. And you
know the first thing she told me?

“I’m sorry. Sorry because I know how much you’ve already
been through.”

Keep calm, carry on.

During the next few years I spent a lot of time travelling between
Boston (where reddit was based) and Maryland (where my parents
lived). Every time I left her side, I was energized by her courage
and unflagging spirit. She gave me all the inspiration I needed to
wake up every morning and kick some ass, because that’s what
you have to believe as a startup founder.

If you’ve worked with the spineless, you know how frustrating
it can be to deal with their poisonous helplessness – something
that’s only heightened in a startup where the most important thing
you can do is not give up. And you’d better fucking believe that
when you come home to a mother battling brain cancer and a
father spending every waking hour taking care of her and running
his own business, you don’t complain, you don’t cower, and you
most certainly don’t quit.

She fought for far longer than any doctor expected and died on
March 15, 2008. But I got to prove that her 25 years of whole-
heartedly supporting me weren’t in vain – you can bet that had
a lot to do with my feelings about selling reddit.

There were some dark months there, like living in the middle
of an interminable fog. Upon reflection, I was probably suffering
from depression for most of that startup. If you happened to
meet me during that time, you probably wouldn’t have known it.

But I got through it thanks to having a startup (and working
with people like Steve & Chris):

Freedom to travel whenever and wherever (I must’ve explained
my 3G modem to every single nurse at Hopkins & NIH).
It was something I could wholly invest myself in to keep my
mind off everything else knowing that everything I was putting
into it wasn’t benefiting my boss.
Having partners like Steve Huffman and Chris Slowe who never
questioned what I was doing with my time, were absolutely
supportive, and could always be counted on for a game of Soul
Caliber or round of beer when I needed it. I hope I was at least
half of all those things in return.

Reprinted with permission of the original author. First appeared in http://hn.my/reddit/.

http://api.notifo.com
http://hn.my/reddit/

Mobile Notifications
for Everything

api.notifo.com

notifo

(I also got a lot of therapy from doodling all those alien logos
for random holidays and events – it was something I knew she’d
check every day. But that’s certainly not for everyone. I started a
photoblog for her to check regularly, too: OMGbabies. Cute baby
animal photos are endorphin-tastic!)

Having been through all this, I can confidently say that start-
ing a startup was the best thing that could’ve happened to me.
Enduring all of that in an office job or law school would’ve been
overwhelming.

Plenty of you reading this have no doubt been through the same
or worse (and I wouldn’t wish it on any of you who haven’t) but
know that under the right circumstances, having a startup could
be extremely beneficial for your mental health.

As if you needed one more reason why you ought to start
a startup.

Thank you, mom. I love you.

Alexis co-founded reddit, breadpig (LOLmagnetz, xkcd: volume 0, & more
geekery), is an angel investor, and Kiva Fellow. He loves falafel & he'd like
to make the world suck less.

http://api.notifo.com

44 HACKER COMMENTS

HACKER COMMENTS

On: What Is LaTeX And Why You
Should Care

From ERICH HEINE (sophacles)
How appropriate, I just finished a paper
today and submitted it for review. LaTeX
is awesome and sucky at the same time.
On the awesome side, you have structure
separate from formatting. This comes
with lots of benefits as mentioned in
the article. It also allows you to use the
concept of imports (or includes if you
will), so you can have a well factored
paper. It also allows you to do sane things
like footnote, cite and reference diagrams
and sources without a need for explicit
number tracking – just give everything
a unique identifier that works for you.
Finally if you do well enough with your
structuring you can output not just
different file formats like pdf or ps or
whatnot, you can also output completely
different styles. It is pretty simple to
wrap your core with the trappings of
IEEE style for one version and a book-
like style for another.

On the sucky side, the toolchain is
notoriously difficult and cryptic. For
some reason you have to make multiple
passes of various tools by hand (or with a
makefile – I recommend
http://code.google.com/p/latex-makefile/
it just works). The syntax can be a bit
inconsistent. The worst is the errors
tho, sometimes it is impossible to figure
out why all your figures are showing up
at the end of the document instead of
in-place, or why all your references are
failing to point at anything.

Overall tho, it is a fantastic system :)

On: Why Free Plans Don’t Work

From ELI JAMES (shadowsun7)
I loved this article, but after thinking
about it for a bit I realize that there is
an argument for going free. Two pretty
strong ones, in fact.

1. If you want to get acquired – and
we’re talking about a big acquisition
here – it would do to go free so you
manage to score a big-enough user
base to get noticed. And so the bigger
company is interested in acquiring you
not only for your technology, but also
for your users. (That said, acquisition
may be a risky bet.)

2. Going free also makes sense if you
want total market dominance. In
which case, free is really the only way
to go. The writer is speaking from the
POV of a micropreneur, and it makes
sense for him to retract his free plan
(in fact, it makes sense for 37signals/
the 37signals model to do so too).

But if you’re in the position of being
the next Facebook, going free and domi-
nating the market is really the best thing
to do. (Or Youtube, or Google, or Flickr).

You find lots of users, lock out the
competition, and then you can figure out
how to monetize.

Which only goes to show that there
are all kinds of businesses out there, and
the advice you read on the net really
should be done through the context of
your particular business and/or market.

On: Keep Calm And Carry on:
What You Didn’t Know About The
Reddit story

From ED WEISSMAN (edw519)
After focusing so much on the ones and
zeroes, posts like this snap us back to all
that really matters: other people.

In the past year, I have made dramatic
changes in my life, both personal and
business, for one reason: so that I can
spend time with my mother who is suf-
fering from severe dementia. We watch
Jeopardy and Wheel of Fortune every
night together. I yell out all the answers
and she laughs, not caring whether
they’re right or wrong.

Before she started slipping away last
year, she told me 2 things:

“From the moment I first saw you, I
knew I would love you unconditionally
forever.”

and

“I’m so proud of you.”

Everything else from this point
forward is gravy.

Thank you, Alexis.

On: How To Read Math

From PETER COOPER (petercooper)
If you like this, you might enjoy this
delightfully funny, yet effective, introduc-
tion to calculus book from 1914:
http://hn.my/calculus/.

It starts by ranting about uppity
mathematicians and academics while
showing how simply you can get your
head around basic calculus.

On: Design For Hackers: Why You
Don’t Use Garamond On The Web

From EDD SOWDEN (edd)
What this is actually saying is don’t
use Garamond for copy text as its not
designed for current DPIs that are cur-
rently used on monitors. It doesn’t mean
you can’t use it for titles or headings or
devices with a high DPI.

http://code.google.com/p/latex-makefile/
http://hn.my/calculus/

 45

On: Rich Programmer Food

From MAHMUD MOHAMED (mahmud)
Pretty entertaining, if a bit melodramatic.

I really wish people didn’t mystify such a basic programming
skill. Compiler hacking is something reserved for the wizards
only if you take the classic definition of compiler implementa-
tion: an expensive engineering project, targeting a new proces-
sor, architecture or OS.

In that sense, sure. You will be working in a lab with hun-
dreds of developers, and tinkering with a piece of multimillion
dollar prototype.

In reality, however, “compiler construction” boils down to
foundational language theory, along with various tricks and
techniques for translating a set of very straightforward algebraic
rules, to another set. Anytime you write regexes or XPath
to extract a set of fields from a documents and transform to
something “readable”, you’re almost writing a simple one pass
assembler, using some implicit “business rules” (i.e. all numbers
should be floats, names capitalized, etc.) for productions.

Compiler skills will give you the theoretical backbone to
discover, refine and assess those implicit rules. Not to mention
techniques for transforming them from one form to another.

To the list of skills made mystical and magical by people I
would add Lisp. It’s not magic. I mention it because it just so
happens to have compiler construction lore aplenty.

The first Lisp exercises you will read in your lisp book of
choice (often requiring nothing more than basic English literacy
and 6th grade arithmetic) are the expression simplification
and evaluation exercises. Transforming your elementary school
algebra rules (multiplication and division before addition and
subtraction, etc.) to something the machine can execute. The
hardest part is just understanding the words: if you have a
hunch for what “expression”, “term”, “rule”, “left/right hand-
side” and “precedence” might mean, you’re good to start.

Few chapters of a Lisp book will spare you volumes of tradi-
tional compiler construction techniques, taught by rote methods.

The first time I attempted to read SICP I had convulsions
and physical pain. The whole time I had this inferiority com-
plex nagging at me, telling me this was something for “smart
kids” and I was unworthy. But this stopped after I went through
the first few parts of chapter 1, and took in the playful tone the
text. I felt stupid afterward; like being afraid of a St. Bernard. It
looks big, but it’s actually bubbly.

Don’t listen to people when they say something is difficult or
not for the faint of heart. Put a saddle on Falkor and go flying!

On: In Praise Of Quitting Your Job

From JAMES KING (agentultra)
I just came out of a 2.5 year stint. Before that I went into
consulting because I couldn’t hold down a job for even a year.
I figured it was boredom and thought the solution was to
simply expose myself to a constant stream of new problems.
Turns out it was simply ownership that was the problem. I
never felt in control.

By ownership I mean ownership of my domain (area of
involvement, etc) in the project. I don’t mean ownership as in
control and possession. The kind of ownership that kept me
around at my last gig was the kind that let me make sugges-
tions, criticisms, and decisions that were taken seriously. I had
responsibility to back up every claim I made and that responsi-
bility kept me highly motivated to produce the best software I
could. It made the project feel more collaborative and kept me
involved as a part of its development.

What kills that motivation is a loss of that ownership. In
the final months of my last gig we brought on someone who
took total ownership of the project practically from design
to implementation. It no longer felt collaborative. I felt like a
monkey in a room of monkeys trying to type out Shakespeare;
as if I could replace myself with a junior programmer at half
my salary and things would still run smoothly. That’s not a
good feeling and such loss of ownership (or lack of it in the first
place) is completely demoralizing.

I get the sense that the OP was referring to this kind of own-
ership. The kind that makes you feel involved and responsible.

But does that mean you should quit your job? I don’t think
so. Some jobs will have ups and downs. I didn’t leave my job
when they brought the new guy on. I was going to stick it
out... just circumstance brought my tenure there shorter than
anticipated. I think you can stick it out in this way as well and
avoid “depression.” I take pride in my work and it does affect
me very personally.. but you have to keep things in perspective.
Especially when you have other people relying on you to keep
your job.

For links to the posts on Hacker News, visit hackermonthly.com. All comments are reprinted with permission of their original author.

http://hackermonthly.com

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

http://www.magcloud.com

	Curator’s Note
	Contents
	FEATURES
	How To Read Mathematics
	Why Free Plan Don't Work

	PROGRAMMING
	Rich Programmer Food
	Readme Driven Development
	What Is LaTeX And Why You Should Care
	Don't Let jQuery's $(document).ready() Slow You Down
	SSH: Tips and Tricks You Need

	SPECIAL
	In Praise Of Quitting Your Job
	Design For Hackers: Why You Don't Use Garamond On The Web
	Keep Calm And Carry On: What You Didn't Know About The Reddit Story

	HACKER COMMENTS

